INVESTIGACIONES SOBRE ANILLO ROJO DEL COCOTERO
por
F. M. Bain y S. A. Fedón C.*

INTRODUCCION

La enfermedad denominada anillo rojo, ha sido reconocida durante muchos años como un problema muy serio en los cultivos jóvenes de cocoteros en las Antillas y América Tropical. Como resultado del trabajo llevado a cabo alrededor de hace unos treinta años, Nowell demostró que era producida por un nemático Aphelechnus coccophilus y recomendó las medidas de control que han sido aplicadas con éxito en Trinidad. En Venezuela, donde no se han efectuado medidas de control, la enfermedad constituye ahora un serio problema en muchas partes del país y a menos que ellas se apliquen rápidamente, será la causa de una gran reducción y quizás la extinción del cultivo en esas zonas. Como las medidas de control recomendadas por Nowell, fueron en gran parte basadas en deducciones respecto a la manera por la cual la enfermedad se propaga de un árbol a otro, los experimentos que se describirán más adelante, fueron planificados con la esperanza de obtener más datos directos sobre la materia y encontrar un método más directo de control para su aplicación en el país.

DESCRIPCION DE LA ENFERMEDAD

Síntomas externos:

El primer síntoma que se observa es un amarillamiento progresivo y bronceado de las hojas que comienza en la extremidad de cada hoja afectada. Usualmente las

* Asesor Técnico y Adjunto, respectivamente, de la Compañía Copra S. A.

—103—
inferiores son las primeras en mostrar los síntomas, pero a veces algunas de éstas pueden permanecer verdes, mientras que las de más arriba muestran el amarillamiento y bronceado progresivo. En las primeras etapas del proceso no se puede separar los síntomas externos, del secamiento natural de las hojas viejas, especialmente cuando es acelerado por sequía o inundación. Sin embargo, la diferencia se torna más evidente en el caso de hojas vigorosas y de hojas más jóvenes. Se llega a esta condición alrededor de un mes después de la aparición del primer síntoma.

La caída de las nueces en todos los estados de inmadurez tiene lugar al mismo tiempo o muy cerca del período de descoloración de las hojas y a menudo es el primer signo externo de la enfermedad. Sin embargo, debe recordarse que la caída de nueces jóvenes a menudo tiene lugar en árboles saludables. Las hojas erectas tienen una tendencia a romperse y colgar. La causa de esto es una pudrición debida a infección secundaria, la cual comienza en la base de las hojas y gradualmente se extiende hacia la extremidad.

En las etapas finales, el cogollo se pudre como resultado de una infección bacteriana, luego se cae.

Se observará que los síntomas externos son idénticos a aquellos de la marchitez de hoja bronceada.

Síntomas internos:

Si transversalmente cortamos un árbol por la base del tallo, en el cual los síntomas externos son muy marcados, se puede ver una zona roja obscura o amarillo rojiza de alrededor de 2 o 3 cms. de ancho y que comienza a unos 3 o 5 cms. de la periferia. Si se hace una sección longitudinal, se verá que la zona rodea completamente la base del tallo, extendiéndose hacia arriba una banda roja sólida hasta alrededor de la mitad de su altura. Sobre ésta aparecen líneas longitudinales y finalmente como puntos rojos aislados que se extienden hasta el tejido blando cerca del cogollo. En algunos casos no hay zona roja en la base de la planta y se encuentra sólo en la parte superior del tallo.

Cuando se parte una hoja a lo largo de su centro, se puede ver la misma descoloración por listas en el pecíolo, que se extienden de la base hasta una distancia de 75 cms. hacia la extremidad. Este rayado a menudo es ocultado por el desarrollo de una pudrición marrón.

En las raíces, los efectos visibles de la enfermedad están limitados a la corteza. En plantas sanas este tejido es completamente blanco y suave pero cuando está infectado se vuelve seco y descolorido, siendo levemente amarillo o rosado al comienzo y finalmente marrón rojizo. Evidentemente ésta es la última parte del árbol que se infecta ya que una planta que esté completamente infectada en el tallo y hojas puede no mostrar la infección en las raíces.

En las Antilllas, es muy raro encontrar la enfermedad en árboles menores de cuatro años o mayores de dieciséis. Nowell informa solamente haber visto uno de
tales árboles y juzgaba que tenía alrededor de tres años de edad. En Venezuela, úno encuentra frecuentemente la enfermedad en árboles que no han alcanzado el período de floración.

DISTRIBUCION DE LA ENFERMEDAD

Ahora se conoce que esta enfermedad se encuentra distribuida en las islas antillanas desde Santa Lucía hasta Trinidad y en las zonas cocoteras de Sur y Centro América. Su presencia no ha sido delatada hasta ahora en ninguno de los países del hemisferio oriental.

TRABAJOS PREVIOS

La primera noticia acerca de la aparición de la enfermedad en la costa Sur Oeste de Trinidad se debe a J. H. Hart en 1905. Evidentemente, existía muchos años antes pero fue confundida con la pudrición del cogollo (Bud rot). En 1906, Stockdale para distinguirla de la pudrición del cogollo, la estudió bajo el nombre de enfermedad de la raíz (root disease) y atribuyó su causa a un hongo del género *Botryodiploida*. En 1910, Rorer hizo extensos estudios y concluyó que no era causada por un hongo parásito, sino que era una dolencia fisiológica debida a condiciones desfavorables del suelo. Es difícil entender la última conclusión de Rorer, pues la enfermedad se ve en zonas donde se encuentran las mejores condiciones requeridas por este cultivo.

En 1918, Nowell observó que un nemávido estaba constantemente presente en los tejidos afectados y emitió la teoría de que era causada por dicho nemávido, posteriormente llamado *Aphelenchus coccophilus*. Más tarde, esto fue confirmado por posteriores observaciones en Trinidad y Tobago, así como también experimentalmente. El demostró que los puntos rojos aislados que se notan en la parte superior de la zona roja del tallo y al comienzo de la infección en las hojas (pecíolos), eran los núcleos iniciales que contienen unos pocos nemátodos adultos junto con larvas y huevos. La zona roja del tallo, es una extensa infección con millares de organismos activos. En las secciones del tejido blanco meristemático de las extremidades superiores del tallo y las hojas embrionarias, puede verse los nemátodos en grandes cantidades distribuidos a lo largo entre las células, como hifas de hongos o permaneciendo agrupados en los largos espacios intercelulares. En esta clase de tejido, pueden moverse en cualquier dirección y no están confinados a las manchas descoloridas que señalan sus lugares de cría. En las raíces, están presentes adultos y larvas en gran cantidad, pero raramente se encuentran huevos. La reproducción tiene lugar en el tallo, siendo más activa en las partes superiores. La infección está siempre confinada al tejido conectivo, los haces vasculares permanecen sin infestarse.

Nowell, en sus experimentos de inoculación introduciendo pedazos de ma-
terial infectado dentro del tallo por medio de un hueco taladrado con mecha, o en una herida cortando un pequeño trozo del peciolo de una hoja superior o colocándolos dentro de una o algunas axilas de las hojas sin herida artificial, fue capaz de producir casos típicos de la enfermedad, siendo evidentes los síntomas a los 60 o 70 días.

En exámenes cuidadosos de árboles muertos por otras causas, él nunca pudo encontrar este organismo u otra causa remota comparable. En la actualidad es un hecho admitido que el nemá todo *Aphelenchus cocophilus* COBB, es el agente causante.

La longitud de los adultos, macho y hembra, la indicó COBB como de 1 mm. Los huevos son cilíndricos y levemente curvados, siendo depositados en los tejidos vivos. No se han llevado a cabo estudios sobre la posible existencia del nemá todo fuera de la planta. Nowell presumía que cuando un árbol muere, el suelo en su cercanía se vuelve altamente infectado y permanece así durante un período considerable. Nowell provisionalmente sugirió que la infección se efectuaba en la base de las hojas y consideraba probable que los nemátodos ascendían desde el suelo por la superficie del árbol y penetraban por la base de las hojas.

Con el objeto de explicar por qué no se infectaban las plantas antes de llegar al período de floración, emitió la hipótesis de que la infección tenía lugar a una edad temprana y sus efectos se volvían visibles cuando el árbol llegaba a la madurez. Nowell como resultado de la rapidez de la infección efectuada por medio de experimentos, desechó esta hipótesis pero no sugirió ninguna otra explicación.

Al hacer recomendaciones sobre el control de la enfermedad, Nowell le daba mucha importancia al hecho de impedir que los nemátodos de árboles infectados alcanzaran el suelo y recomendaba que tales plantas debían ser destruidas tan pronto como fuera posible antes de que la infección llegara a las raíces. El recomendó que los árboles deberían cortarse y quemarse, pero era esencial no solamente cortar el tallo transversalmente por su base, sino también excavar el pie, cortar las raíces y sacarlo. Indicaba con fuerza, la necesidad de quemarlo íntegramente ya que los nemátodos podrían encontrarse vivos en gran número, algunos meses después, en tallos que habían sido quemados deficiencemente. Además, él consideraba suficientemente probable, hasta que los hechos fueran conocidos, que los nemátodos pudieran ocultarse en la concha de las nueces caídas y ser llevados a otra localidad, donde fueran usados como semilla.

El no creía en método de desinfección alguno, presumiblemente con los productos accesibles para aquella época.

Además él recomendó zanjas aisladoras alrededor de los árboles infectados, ya que por observación, las zanjas de drenaje parecían actuar como obstáculos a su difusión. Johnson, 1928-1930, parecía estar bajo la impresión de que la infección podría comenzar en la base del tallo o por encima y sugirió que en el último caso.
había la posibilidad de que la infección fuera llevada por hormigas donde hacían sus nidos o por pequeños pedazos de material infectado que habían sido tomados por *Ryhnocoris* y depositados allí.

El dió cifras para mostrar el éxito obtenido mediante una campaña de control. En una finca grande donde en 1921 se cortaron 1.000 árboles con la enfermedad, el número se redujo a 54 plantas cortadas en 1927. El no estaba de acuerdo con el método de cortar los árboles antes de quemar recomendado por Nowell y estableció que era más satisfactorio quemar los árboles en pie, amontonándolos hojas secas perpendicularly alrededor del tallo y saturándolo con petróleo antes de quemarlo. El también pensó que mediante un sistema de drenaje en suelos pesados, así como de zanjas aisladoras, se reduciría la incidencia de la enfermedad. No habría sido necesario hacer esta última recomendación ya que el drenaje, con o sin la presencia de la enfermedad, es esencial en tales suelos para que los árboles puedan vivir durante un período apreciable.

RAZONES PARA EL PRESENTE TRABAJO

La afirmación de Nowell de que las raíces no se infectan hasta que la enfermedad está bien avanzada, puede ser fácilmente verificada por observación general en el campo. Aun cuando casos muy avanzados son examinados, puede encontrarse casi siempre que los sistemas radiculares están perfectamente sanos. Puede deducirse de esto que la infección tiene lugar sobre el nivel del suelo, en el tallo o por encima. Los experimentos de Nowell mostraron que ésta tiene lugar probablemente por encima del suelo y que los nemátodos entran por las axilas de las hojas. Los experimentos que se describirán confirman esto en cuanto a la infección normal que puede observarse en el campo se refiere. En cuanto a que la infección puede moverse de un árbol a otro, es necesario que el nemátodo vaya de un árbol, a las axilas de otro árbol. Esto podría suceder de dos maneras. Una de ellas es la hipótesis emitida por Nowell de que los nemátodos se mueven a través del suelo y suben a los árboles hasta alcanzar las axilas de las hojas. La otra es que el material infectado con nemátodos es llevado por un agente, con más probabilidad por un insecto o insectos como lo sugirió Johnson, aunque él pareció sugerir que esto acontece raras veces. En relación a la primera hipótesis aunque es verdad como Nowell indicó que los nemátodos suben por los tallos del arroz, la analogía podría estar con referencia a palmas de uno a dos años de edad, las cuales no adquieren la enfermedad, más que con plantas de cinco años de edad, las cuales sí la adquieren, siendo mucho más fácil para los nemátodos alcanzar las axilas de las hojas de las primeras que las de las últimas. En caso de aceptar esta hipótesis, las plantas muy jóvenes serían inmunes a la enfermedad, lo cual debe comprobarse. También debe comprobarse que cuando el material infectado es colocado en el área del suelo alre-
dedor de la base de las plantas sanas, se puede obtener la infección en las axilas de las hojas tal como se encuentra en el campo.

Nowell no aportó datos sobre cualesquiera de estos puntos. Con el objeto de explicar los primeros brotes esporádicos que tienen lugar en campos nuevos será necesario demostrar, además de los puntos ya mencionados, que el nemátodo, si es llevado a las grietas de las conchas de las nueces usadas como semilla, puede vivir en el suelo a lo menos por un período de 3 a 4 años. Con respecto a la segunda hipótesis, sería necesario demostrar que el agente es un insecto que normalmente visita palmas jóvenes en período de fructificación y no visita palmas muy jóvenes sin fructificar y sólo ocasionalmente visita palmas viejas o que esas palmas son resistentes a la enfermedad siendo muy jóvenes o viejas.

Como la enfermedad usualmente se mueve de una palma a su vecina inmediata, podría ser también trasmitida por un insecto que normalmente viaja distancias cortas. Con miras a explicar los primeros brotes que tienen lugar a distancias relativamente lejanas de una fuente de infección, sería quizás necesario demostrar que ésta podría tener lugar por medio de otro vector, que sería capaz de recorrer distancias relativamente largas. Fue con el objeto de obtener información acerca de los puntos mencionados precedentemente, que se comenzaron los experimentos descritos a continuación.

EXPERIMENTOS

Estos experimentos fueron efectuados en la hacienda La Salina en Puerto Cabello y comenzaron en Noviembre de 1949. Para los ensayos fue menester el uso de plantas viejas, de plantas jóvenes en fructificación y de plantas sin fructificar. Cada grupo se trató con material infectado de dos maneras diferentes. Probablemente hubiera sido más ventajoso hacer el tratamiento para cada grupo de seis plantas en lugares ampliamente separados para evitar la posibilidad de infección natural entre ellas, pero no quisiéramos introducir la enfermedad en seis áreas diferentes. Por lo tanto se seleccionó una zona donde se encontró los diferentes tipos de palmas necesarias para el ensayo en estrecha proximidad y donde no existía la enfermedad. Como los resultados mostraron después las probables infecciones naturales que podrían haber tenido lugar en los árboles tratados, no alteran las conclusiones principales obtenidas. Por otra parte, las infecciones que tuvieron lugar en algunos árboles fuera del área tratada, permiten obtener una información exacta acerca del modo de efectuarse la infección natural y, cuando se compara con los datos experimentales, permite hacer deducciones exactas con respecto al método por el cual ocurren tales infecciones.

Las condiciones del suelo variaban lentamente dentro del área experimental. En su mayoría, el área se compone de un suelo arenoso de aluvión ideal entre las ciénegas y el mar, pero en ciertas partes semianegadías, hay una acumulación de
sales alcalinas. Los árboles jóvenes en fructificación y los viejos usados en el experimento, se encontraban en suelos ideales, mientras que solamente dos, en cada uno de los tratamientos con plantas sin fructificar, estaban en suelos ideales, los restantes estaban en el área salitrosa. Las palmas en tales suelos tienen un crecimiento lento y, aunque los árboles usados estaban sin fructificar, en realidad es casi cierto que podrían haber tenido más de tres años de edad. Los dos árboles en cada tratamiento en los suelos buenos, tenían menos de tres años de edad.

Como debía esperarse, el propietario estaba muy preocupado por la introducción de la enfermedad en una zona sana, por lo cual fue necesario usar el menor número posible de árboles. Con los tratamientos en árboles sin fructificar y jóvenes en fructificación, se usó seis árboles en cada tratamiento y con árboles viejos solamente una planta en cada una de ellos, como se sabe que tales árboles ocasionalmente adquieren en el campo y nosotros meramente deseábamos obtener los síntomas experimentalemente para compararlos con los síntomas de los otros tratamientos. Después que se empezaron las primeras pruebas, se trataron las axilas de las hojas de tres plantas sin fructificar, con suelo que había estado infectado con material que permaneció encima de él durante tres meses.

Los tratamientos fueron los siguientes:

A. — Aplicación de material infectado sobre el suelo alrededor del sistema radicular de seis plantas jóvenes sin fructificar.

B. — Aplicación de material infectado en las axilas de las hojas de seis plantas jóvenes sin fructificar.

C. — Aplicación de material infectado sobre el suelo alrededor del sistema radicular, de seis plantas jóvenes en período de fructificación.

D. — Aplicación de material infectado en las axilas de las hojas de seis plantas jóvenes en período de fructificación.

E. — Aplicación de material infectado en el suelo alrededor del sistema radicular de una planta vieja.

F. — Aplicación de material infectado en las axilas de las hojas de una planta vieja.

G. — Aplicación de suelo tomado del área sobre las raíces de las palmas usadas en el tratamiento C, tres meses después de que éste había comenzado, colocándolo sobre las axilas de las hojas de tres palmas sin fructificar.

El material infectado usado en los tratamientos, se obtuvo de un árbol de tres años de edad completamente enfermo, que no había alcanzado completamente el período de floración. Se tomó los pedazos de la zona roja, en la mitad de la parte inferior del tallo y se los cortó en trozos de 10 cms de longitud y un centímetro de diámetro aproximadamente. En los experimentos relativos a las axilas de las hojas, se sacudió cinco pedazos en agua y un pedazo fue colocado en cada una de las cinco hojas en la mitad inferior de la corona de cada árbol tratado. Luego la
suspensión en agua fue asperjada también sobre esa parte de la planta. En el tratamiento sobre el suelo, se utilizó alrededor de 20 a 40 pedazos de este material, dependiendo del tamaño del árbol y fué colocado en la superficie del suelo, desde la base de la planta esparcido por toda el área ocupada por la proyección de las hojas. La suspensión acuosa fué luego uniformemente distribuida sobre la superficie. En el experimento G, el suelo fué recogido del área inmediatamente debajo de los pedazos infectados aplicados a los árboles del experimento C y fué colocado en las axilas de las hojas de los árboles tratados.

Es claro que si el nemático es capaz de subir, las condiciones dadas en los tratamientos A, C y E, fueron mucho más favorables para él que las que, de manera natural, encuentra en el campo. En el experimento G, si el nemático vive en el suelo durante algún período en el cual es capaz de subir e infectar los árboles, las condiciones eran mucho más favorables que las naturales en el campo, ya que el organismo había salvado el problema de subir a las axilas de las hojas.

Inmediatamente después de la aplicación de los tratamientos hubo lluvias abundantes y las condiciones fueron ideales para el lavado del material infectado hacia las axilas de las hojas y el suelo, produciendo una película húmeda sobre el tallo que facilitaría cualquier posible tendencia de subir por parte del organismo. En realidad ello también permitió el lavado del material infectado hacia la base de aquellos árboles que tenían huecos al nivel del suelo.

De vez en cuando algunos árboles sufrieron probados con una mecha. El método de sellar el agujero, fué con un pedazo de madera del pecíolo de una hoja sana, de un diámetro aproximado al del agujero, introduciéndolo de manera que quedara bien ajustado y luego cortando al nivel de la corteza la parte que sobresalía.

RESULTADOS OBSTENIDOS

Experimento A.

Las observaciones hechas en estos árboles se dan en el cuadro 1. Como se mencionó anteriormente, la mayoría de ellos crecían en suelos salitrosos y las hojas de tales árboles tienen continuamente un color amarillo. Por lo tanto era difícil observar los síntomas corrientes en las hojas asociados con la enfermedad. Sin embargo, alrededor de seis semanas después de comenzar el ensayo, el árbol N° 14 mostraba un rápido bronceado y muerte de las hojas inferiores, pero se consideró que podía ser debido al anegamiento alrededor de la base del árbol como resultado de fuertes lluvias. Alrededor de dos semanas después el árbol mostraba una apariencia de quemado enteramente diferente de los síntomas asociados con la enfermedad bajo las condiciones de campo. Se cortó la planta encontrándose que tenía una zona roja fuertemente desarrollada en la mitad inferior del tallo. La parte de la base en su totalidad estaba podrida. Había un hueco en ella que alcanzaba hasta

--- 110 ---
la parte central del tronco. La mitad superior del tallo estaba completamente blanca y sana sin signos de listas rojas o manchas. Tampoco había síntomas de infección en las hojas. El examen de las raíces revelaba que estaban completamente blancas y sanas.

Como los árboles en el experimento B se estaban muriendo rápidamente, pero con diferentes síntomas y como la enfermedad estaba tan avanzada en una planta en la parte afectada, se pensó que era probable que podría ocurrir una infección similar en los otros árboles de este tratamiento, con los efectos ocultos debido al hecho de que las hojas estaban anteriormente amarillas. Había que decidirse a cortar todos los árboles en el tratamiento, con la idea de que cualquier infección debida a él se revelaría por sí misma en cierto grado a esa época. Cuando se hizo esto, se encontró que los árboles NOS. 11 y 12 tenían huecos en la base y revelaban síntomas absolutamente idénticos al N° 14. Las plantas NOS. 9, 10 y 13 no tenían huecos en la base y estaban completamente sanas. Como la mayoría de los árboles en este tratamiento, así como en B, no mostraban más amarillamiento y bronceado de las hojas al igual que algunos de los árboles no tratados en el área adyacente, se seleccionó tres de estos al azar y se cortaron para compararlos. Estos revelaron tejidos íntegramente saludables y hasta el tiempo presente (10 meses después de las primeras inoculaciones), ninguna de estas plantas han muerto de ésta o cualquier otra causa. Se vió que en tres árboles que habían tenido huecos en sus bases ocurrió una infección avanzada y pudrición en la mitad inferior del tallo, sin infección en otras partes del árbol, mientras que en otros tres que no tenían huecos en sus bases, no habían síntomas de cualquier infección en ninguna de las partes del árbol.

Experimento B.

Las observaciones hechas en estos árboles se dan en el cuadro 2. Como en el caso de las plantas del experimento A, era difícil descubrir temprano los síntomas que presentaban las hojas en la mayoría de ellos. A principios de Enero, se observó que algunas de las hojas inferiores mostraban el bronceado en contraste con el amarillamiento previo y se decidió cortar algunas de ellas las cuales revelaron una infección en la base. Por medio de huecos hechos con mecha, se encontró que también se había desarrollado la zona roja en la parte del tallo. Esto se observó también en las plantas NOS. 15, 16, 17 y 18. Cuando se cortaron y examinaron se encontró que la infección estaba completamente desarrollada en la base de las hojas y la zona roja era enteramente visible en el tallo. El color de la zona roja era más oscuro en la base, alcanzando más o menos hasta la mitad de la altura del tallo, luego pasaba a líneas rojas y puntos en la parte superior. No había pudrición del tejido en la base del tallo, como se observó en el experimento A. No había infección en las raíces, las cuales estaban en todos los casos perfectamente blancas y sanas. Los síntomas eran idénticos a aquellos normalmente observados en infecciones naturales.
Las plantas Nos. 19 y 20 estaban en suelos buenos y conservaban las hojas verdes todo el tiempo. Hasta esa época no mostraban cambio alguno en el color de las hojas y de aquí que se las dejaran una semana más para ver si se producía algún cambio de color antes de someterlas a prueba. Una semana después no mostraban cambio alguno de color, conservándose perfectamente verdes, sin embargo el examen reveló una infección intensa en las hojas. Las pruebas con agujeros en los troncos también revelaron la presencia de la zona roja. Cuando éstos se cortaron, revelaron síntomas idénticos a los otros árboles cortados anteriormente, a excepción de que no había cambios en el color de las hojas. Por lo tanto, es posible que exista el desarrollo de una zona roja en el tallo antes de que se puedan observar cualesquiera de los síntomas externos en las hojas. Debe mencionarse que en estas plantas había muy poca distancia entre la base de las hojas y la del tronco.

Experimento C.

Las observaciones hechas en las plantas de este experimento se dan en el cuadro 3.

Según Nowell, los síntomas completos de la enfermedad se desarrollan alrededor de dos meses después de la inoculación artificial. Se decidió previamente seleccionar al azar un árbol en este experimento así como en el experimento D, después de transcurrir un período de un mes y examinarlo cuidadosamente para ver si en esa época presentaba algún síntoma de infección. Durante ese primer mes no pudo observarse cambio externo alguno en ninguno de los árboles. Se escogió para cortar el árbol N° 3 y se hizo un cuidadoso examen de todas sus partes. El aspecto externo de toda la planta era completamente saludable. Durante el siguiente mes no se observó cambio alguno en ninguno de los árboles, pero al final de este período, el árbol N° 3 mostró un broceado repentino de las hojas inferiores. Estas hojas tomaron rápidamente una apariencia seca. Como esta planta estaba al lado de una zanja de drenaje, la cual estaba llena de agua como resultado de fuertes lluvias, se pensó que los síntomas eran debidos a esta causa. Sin embargo un mes después tres hojas superiores, no en edades sucesivas, tomaron una apariencia broceada y se secaron rápidamente. Se probó el tronco con la mecha y se descubrió fácilmente la presencia de una zona roja. Cuando se cortó, reveló condiciones idénticas a las obtenidas en el experimento A, en las plantas Nos. 11, 12 y 14. Había un hueco de cierta dimensión en una parte de la base del árbol próxima a la zanja. La zona roja se limitaba a la mitad inferior del tallo y estaba muy desarrollada, con los tejidos totalmente blandos y podridos. La mitad superior del tallo y la corona no revelaban ninguno de los síntomas mostrados en árboles con infección natural. Ninguna de las otras plantas revelaron cambios marcados, pero se examinó los tallos de las plantas Nos. 6 y 8 con una mecha, para constatar la presencia de una zona roja en la parte inferior del tronco. El examen reveló te-
jidos blancos y sanos. Durante el m. s siguiente no se observó cambios, pero al final de este período, por error le dieron un pase de arado a la zona por un lado de las plantas Nos. 6 y 8 y, algunos días después, se observó que las hojas inferiores caían. Se observó también que el tronco del árbol N° 5, adyacente al N° 6, no había sido quemado. La caída de las hojas fué atribuida al arado, habiendo removido dichas hojas. Prueba con mecha en la base de los troncos de estos árboles revelaron tejido limpio. Hacia fines de Abril, se observó que caían algunas de las hojas superiores del N° 6, estando todavía verdes. El N° 8 no mostraba cambios en las hojas superiores. Los árboles Nos. 4 y 7 aún no habían mostrado cambio hasta esa fecha. Hacia fines de Mayo, las hojas superiores del N° 6, súbitamente se inclinaron y se pusieron amarillas. Este árbol fué cortado. No había zona roja en la mitad inferior del tronco, pero se encontró en la mitad superior, extendiéndose desde la corona hacia abajo. Las hojas estaban completamente infectadas; las raíces estaban sanas. Durante el mes de Junio, se vió que una de las hojas erectas del árbol N° 7 estaba quebrada en un punto a lo largo de la lámina de la hoja, el síntoma era idéntico al obtenido un mes antes, en uno de los árboles tratados hacia fines de Agosto. Durante este período y el mes de Julio, en forma progresiva, sucedió lo mismo a otras tres hojas erectas, pero las hojas inferiores permanecieron normales. Una prueba en el tronco con la mecha no reveló la presencia de ona roja. Durante la primera quincena de Agosto, las hojas inferiores se tornaron amarillas, se decidió cortar la planta. Se observó el mismo aspecto obtenido en el N° 6. La mitad inferior del tallo no mostró la zona roja, ésta fué observada en la mitad superior, descendiendo de la corona. Las hojas estaban completamente infectadas pero no había infección en las raíces. Durante el mes de Junio se notó que las hojas inferiores de la planta N° 4 estaban algo caídas, pero verdes. Hasta el presente, o sea dos meses después, no ha ocurrido cambio en el color de las hojas, ni caída de las nueces y el árbol parece perfectamente normal. La planta N° 8 no ha mostrado cambio y aparentemente continúa sana. Se verá que 2 o 3 meses después de comenzar el experimento, el árbol N° 5 estaba infectado con la zona roja limitada a la base del tallo. Después de 6 y 9 meses respectivamente, los árboles 6 y 7 adyacentes al N° 5 mostraron la infección y la zona roja estaba en la mitad superior del tallo. Después de un período de 9 meses las plantas Nos. 4 y 7 daban la apariencia de estar completamente sanas.

Experimento D.

Las observaciones hechos en estos árboles se dan en el cuadro 4. Alrededor de dos semanas después que se comenzaron los tratamientos, cuatro de estos árboles mostraban caída de las nueces y efectos en las hojas. La planta N° 24 mostraba caída prematura de las nueces, mientras que las plantas Nos. 22 y 23, además de lo anterior presentaban un bronceado en una y dos hojas, respectivamente. El N° 21
mostraba caída de nueces en todos los tamaños y cuatro hojas bronceadas. Los otros dos árboles no mostraban síntomas. Dichos síntomas no se consideraron relacionados con el tratamiento y los resultados posteriores parece no confirmarlo. El N° 23 se repuso y aún se conserva vivo, mientras que el N° 24 murió después que los árboles que no habían mostrado cambios y el N° 22 moría al mismo tiempo que éstos. El N° 21 que era uno de los más severamente atacados, se seleccionó para cortarlo un mes después que se comenzó el experimento como se hizo con la planta N° 3. Esta no reveló signos de infección en ninguna parte, pero los tejidos del tallo después de su exposición a la luz y al aire por pocos minutos tomó un color rosado y finalmente castaño en el área de conducción. El N° 3 no mostraba un efecto comparable. Creímos que se le había aplicado una substancia tóxica en el suelo alrededor de la base, mientras estuvimos ausentes. Justamente dos meses después de la inoculación artificial, se observaron síntomas inequívocos de la enfermedad. Los Nos. 22, 24, 25 y 26 mostraban caída de las nueces, bronceado y hojas inferiores colgantes. Las plantas Nos. 22 y 26 fueron cortadas en esa época pero la N° 25 sufrió el proceso completo de la enfermedad. La N° 24 no fue cortada y mediante un hueco hecho, no pudo constatarse la existencia de zona roja alguna. Un examen de las plantas Nos. 22 y 26, reveló síntomas idénticos a aquellos que se observan usualmente bajo condiciones de campo. Había una zona roja marcada en la mitad inferior del tallo, pasando a líneas y luego a puntos en la mitad superior. Las hojas estaban completamente infectadas. Las raíces perfectamente saludables y blancas; no había conexión entre la zona roja del tallo y el área radicular. En el N° 25, un agujero de ensayo reveló la presencia de una zona roja en la base por primera vez, después de la caída de las nueces, pero cuando sólo unas pocas hojas se habían vuelto levemente amarillas. Las hojas superiores continuaban colgando y volviéndose amarillas, justamente antes de la caída del cogollo, tres meses después de la infección; era un ejemplo perfecto de la enfermedad, tal como se vió en condiciones naturales. El N° 24 continuaba mostrando los síntomas progresivos de las hojas y se cortó unos pocos días después del N° 25. Las hojas mostraban infección completa, pero no había zona roja en ninguna parte del tallo. Las raíces estaban completamente sanas. Cuando el N° 25 fué cortado, se obtuvieron síntomas típicos pero la zona roja era de color claro y no estaba muy extendida. Aunque el cogollo había caído ya, no había infección en las raíces. En este tiempo, el N° 23 se había restablecido de los primeros síntomas visibles y estaba completamente sanos. En Marzo, un mes después que los otros habían muerto, se aplicó de nuevo el tratamiento a este árbol. El material infectado provenía de la primera planta que había muerto de infección natural fuera de los árboles tratados. Hasta el tiempo actual, cinco meses después de la segunda inoculación y nueve de la primera, este árbol permanece aún perfectamente sano.
Experimento F.

Este árbol no mostró los efectos de la enfermedad hasta fines de Enero, cuando cayeron algunas nueces semimaduras. Temprano en Enero las hojas inferiores comenzaron a ponerse amarillas y a colgar. Alrededor de la mitad de Febrero se le hizo en el tronco un agujero de prueba, pero no pudo observarse zona roja alguna. A fines de Marzo, aproximadamente todas las hojas estaban amarillas y colgando, el cogollo aún verde no había caído. Un obrero subió al árbol y cortó unas pocas hojas las cuales revelaron la presencia de la enfermedad en su base. Otro agujero de prueba hecho en esta época, no reveló la presencia de zona roja en la parte inferior del tallo. Alrededor de tres semanas después cayó el cogollo. El árbol fue cortado y no se presentó la zona roja en la parte inferior del tallo, pero sí se encontró en la parte superior extendiéndose hasta una distancia de cerca de dos metros de la corona. Todas las hojas mostraban la infección debida a la enfermedad.

Experimento G.

Desde el tiempo en que fue hecho el tratamiento hasta el presente, un período de 6 y ½ meses, no se ha observado cambio adverso alguno en estos árboles.

INFECCIONES FUERA DE LOS ARBOLES TRATADOS

Temprano en Marzo, una planta joven en fructificación junto a la N° 26, mostraba los síntomas externos de la enfermedad. Cuando fue cortada, reveló los síntomas típicos de la dolencia, siendo idénticos a aquellos obtenidos en los árboles Nos. 25 y 26. Un cuidadoso examen de la corona indicó que la infección parecía ser más aguda en la base de tres hojas donde había muchas flores secas y la inflorescencia estaba descomponiéndose. Estos parecían haber constituido los puntos primitivos de la infección.

En Junio, un árbol aún sin fructificar, adyacente al experimento B de un lado y del experimento D y del árbol N° 1 por el otro, mostraba una rotura de las hojas erectas, similar a la que se presentó posteriormente en el N° 7. Después de que los síntomas habían progresado, se cortó el árbol. A la diferencia del N° 7, esta planta tenía la zona roja completamente desarrollada a lo largo de todo el tallo.

En Julio, un árbol joven en fructificación adyacente a la primera planta descrita padecía de la enfermedad, presentando síntomas idénticos a los mostrados por aquélla. Es de mencionar que en la finca no se hizo intento alguno por quemar en una forma rápida y eficiente el primer lote de plantas que fueron cortadas en Enero y Febrero. Nosotros tuvimos que hacerlo posteriormente.

DISCUSION DE LOS RESULTADOS

Al comienzo del ensayo no existía la mínima señal que revelase la presencia de anillo rojo en el lugar del experimento o en alguna de las áreas adyacentes. Sin-
c embargo, es enteramente posible, que algunos árboles pudieran estar infectados y no presentasen síntomas externos claramente perceptibles. Si esto hubiera sido así, uno podría esperar haber visto la enfermedad en un árbol o dos fuera del experimento antes que las plantas del ensayo la hubieran desarrollado o si se aplica a cualquiera de los árboles tratados, la planta o plantas utilizadas, habrían presentado los síntomas de la enfermedad en un período inferior a dos meses que según Nowell es necesario para que los síntomas externos se hagan evidentes en árboles artificialmente inoculados. Se verá por los resultados, que las primeras bajas se presentan solamente en árboles tratados alrededor de dos meses después de ser inoculados artificialmente. Con seguridad se puede, por lo tanto, concluir que no había infección en la zona antes de iniciar los experimentos y que la primera fuente de infección en el área se produjo a consecuencia de las inoculaciones artificiales. Los resultados ampliamente confirman lo establecido por Nowell de que los síntomas externos se vuelven evidentes alrededor de los 60 o 70 días después de la inoculación. También se pudo ver que el primer caso de la enfermedad, fuera de los árboles tratados, se presentó temprano en Marzo, en un período aproximado de dos meses, después que la mayoría de los árboles tratados que contraerón la enfermedad habían muerto o estaban seriamente afectados. Puede concluirse con bastante certeza que la fuente de infección que causó la muerte de esta palma provino del área tratada y la muerte de cualquier otra palma, acaecida con anterioridad a esa fecha, fué ocasionada por el tratamiento a que fué sometida. Debé también concluirse que existe la posibilidad de que la muerte de cualquier palma tratada después de esa fecha podría ser el resultado de una infección natural y no necesariamente del tratamiento en referencia. Esto se aplica solamente a dos palmas en el experimento C.

Se verá que, independientemente del tratamiento, en todos los casos en que aparece la infección, los sistemas radiculares estaban sanos y libres de ella, aún cuando se le permita a la enfermedad proseguir hasta una etapa avanzada o cuando claramente la infección se efectúe mediante un hueco en la base de la planta. Esto confirma lo establecido por Nowell de que la última parte que se infecta en la planta es el sistema radicular y comprueba que la infección tiene lugar encima del suelo.

Tres plantas en el experimento A y una en el experimento C, fueron evidentemente infectadas a través de huecos en las bases. A juzgar por el corto tiempo necesario para que se presentaran los síntomas, la infección tiene que haberse efectuado muy pronto después del tratamiento. Los síntomas mostrados no han sido encontrados bajo condiciones naturales y se puede concluir que tales infecciones ocurren raramente, quizás nunca, en la naturaleza. La razón es que mientras en la naturaleza hay muchos árboles con huecos en campos infectados y sujetos a inundación, no hay la concentración de material infectado alrededor de ellos, como se le suministra en los experimentos, para facilitar la llegada de los nemátodos a otro árbol. Parecería también que en la naturaleza, los nemátodos no se encuentran
agrupados en el área del suelo alrededor de plantas saludables, después que ellos puedan haber dejado la fuente previa de infección; o ellos no permanecen por mucho tiempo en forma capaz de producirla. Mientras que, teóricamente, es posible transmitir la enfermedad de tal manera, debe concluirse que ese no es el modo corriente en la naturaleza y, es dudoso que ello pudiera ocurrir.

Aparte de los árboles discutidos, las plantas que se infectaron fueron las seis del experimento B, cuatro de los árboles restantes del experimento D, uno del experimento F y dos del Experimento C. El tratamiento en los experimentos B, D y F, consistió en colocar material infectado en las axilas de las hojas. Las dos palmas en el experimento C, que tenían material infectado colocado en el suelo, mostraba solamente síntomas en la zona de la corona, indicando claramente que la infección había comenzado en esa zona. Los árboles en los experimentos B y D, mostraban los síntomas típicos que presentaban las plantas en la naturaleza. Los del experimento C y E, mostraron síntomas que se encuentran ocasionalmente en la naturaleza. Se puede concluir que en la naturaleza, la manera normal de invasión es a través de las axilas de las hojas, confirmando la opinión anteriormente expresada por Nowell.

El punto a considerar ahora es si el organismo vive en el suelo y sube a las axilas de las hojas o si el material infectado es llevado por un agente o agentes a esa parte del árbol. Se verá que todos los árboles sin fructificar del experimento B, murieron más rápidamente que las plantas jóvenes con frutos y que las viejas. Por lo tanto es claro que estos árboles no son resistentes y se podrían esperar que en la naturaleza se infecten más fácilmente que los árboles viejos si el organismo sube a la base de las hojas. Esto sugiere que el organismo no sube al árbol. En el experimento G, se vió que el suelo donde el material infectado había permanecido durante tres meses, no produjo los síntomas de la dolencia en seis meses, cuando se le colocó en las axilas de las hojas de plantas jóvenes sin fructificar, los cuales se han visto morir rápidamente con la enfermedad, cuando se les coloca en esa parte el material fresco infectado. Cuando se considera lo anterior junto con la observación de que los síntomas obtenidos a través de la infección por medio de huecos en la base de los árboles no se presentan bajo condiciones naturales, parecería deducirse que no sólo el nemátodo no sube, sino que si permanece en el suelo durante cierto período de tiempo, se encuentra en una forma que no produce la infección.

Se ha visto en el experimento C, que aparte del árbol que fué infectado por medio de un hueco en la base, otros dos murieron de la infección que comenzó en la corona. Estos árboles fueron, el N° 6 que murió alrededor de seis meses después del comienzo del tratamiento y el N° 7 que murió alrededor de tres meses después de la muerte del N° 6. La evidencia hasta ahora nos ha conducido a creer que el nemátodo no sube a las axilas de los árboles. Consideraremos esto algo más con referencia a esos dos árboles. Uno podría esperar que inmediatamente después que el
material infectado se coloqué en el área radicular de estos árboles, los nemátodos podrían haber comenzado a subir y dentro de tres meses uno pudiera haber visto los signos definitivos de este tipo de infección en los árboles Nos. 6 y 7 de esta manera, habría que presumir que los nemátodos no empiezan a subir sino al cabo de tres o seis meses después de haber sido colocados sobre el área radicular. Sin embargo, tenemos la evidencia de que el suelo tomado en esa zona no produjo la infección en el experimento G, cuando fue colocado en las axilas de las hojas de otros árboles. Parece improbable que si el suelo no tenía nemátodos para producir la infección en este experimento durante un periodo de seis meses, pudiera tener nemátodos para subir al árbol N° 6 en el mismo periodo; al N° 7 aún tres meses después y hasta el presente, no parecen haber comenzado a subir a los árboles Nos. 4 y 8. La conclusión de que la infección de estos árboles no era debida a los tratamientos experimentales, salta a la vista. Se ha dicho ya que el primer caso de infección natural, ocurrió a principios de Marzo, aproximadamente tres meses antes de la infección en el árbol N° 6. Otra planta también estaba muriéndose de infección natural al mismo tiempo que la N° 6 y una tercera más o menos al mismo tiempo que la N° 7. Las plantas que murieron de infección natural estaban junto a los árboles del experimento D al otro lado del campo y produjeron los mismos síntomas generales que los árboles del experimento D, los cuales fueron los que normalmente se encuentran bajo condiciones naturales. Los síntomas que presentaban los árboles Nos. 6 y 7 no eran los mismos que generalmente aparecen en el campo. Estos árboles estaban a cierta distancia del experimento D y pensamos que la infección no vino de esta fuente y que el agente era diferente al que operaba en el caso de infecciones fuera del área tratada. Los síntomas que presentaban estos dos árboles eran muy parecidos con la excepción de que no habían las hojas partidas en el N° 6 como ocurrió en la planta N° 7. Se recordará que posteriormente a la aradura se removió las hojas inferiores del N° 6, por esta razón las hojas erectas que no estaban sujetas a sus bases, cayeron en lugar de quebrarse como ocurrió en el N° 7 en donde las hojas estaban intactas. Como veremos más tarde, creemos que el agente trasmisor en casos que presenten tales síntomas, es Rhyncophorus, mientras que en casos con síntomas normales los agentes usuales son las hormigas o comejenes, aunque Rhyncophorus puede también ser un agente. Se mencionó que el árbol N° 5 adyacente a estas dos plantas y que solamente presentaba la infección en la parte baja del tallo, quedó caído en el suelo durante largo tiempo sin haber sido quemado. Este árbol no tenía infección en las axilas de las hojas y por esa razón es que las hormigas no podrían ser consideradas como las trasmisoras de la infección. Se observó la presencia de Rhyncophorus en este tronco así como también en el árbol N° 7 y en el segundo que murió de infección natural fuera del experimento el cual mostró, de manera similar las hojas erectas quebradas. Parece razonable concluir que la infección provino del árbol N° 5 y que Rhyncophorus era
probablemente el agente trasmisor. Este punto puede ser discutido desde otro punto de vista. Olvidemos la otra evidencia mencionada y presumamos que la infección era debida a los nemátodos que subían al árbol. A base de esta suposición debemos concluir que se necesita a lo menos seis meses para producir la enfermedad y que los síntomas obtenidos fueron aquéllos que ocasionalmente se encuentran en el campo. Sin embargo sabemos, a base de las infecciones naturales que se presentaron que éstas aparecen de un modo más rápido. Deberá concluirse pues, si la presunción es correcta, que la trasmisión en esta forma, produce síntomas que no se encuentran normalmente en el campo y a una velocidad mucho menor que la de las infecciones naturales. Por lo tanto la razón por la cual ocurren infecciones normales en el campo o los síntomas que se encuentren normalmente en la naturaleza, no se puede explicar a base de esa presunción. Basados en la evidencia general presentada, sin embargo, parece más lógico desechar tal hipótesis y concluir, como se estableció anteriormente, que la infección de estos árboles probablemente era causada por Rhyncophorus al llevar el material infectado del árbol N° 5 a los cogollos.

METODO DE TRASMISION

Se ha interpretado los resultados experimentales en el sentido de indicar que el organismo no viaja a través del suelo ni sube a las axilas de las hojas como lo sugirió Nowell. La otra manera es que ellos deben ser llevados allí por un agente o agentes. Se mencionó que el primer árbol en contraer la enfermedad como resultado de la infección natural estaba completamente infectado a principios de Marzo. Un examen minucioso también reveló que la infección parecía haber comenzado en la base de tres hojas, donde había inflorescencias descompuestas y acumulación de flores caídas. A base de la evidencia obtenida en los experimentos, la primera infección debe haber tenido lugar a fines de Diciembre o a principios de Enero y haber provenido de los árboles Nos. 25 o 26 que estaban a escasa distancia uno de otro. Estos árboles habían sido tratados en las axilas de las hojas con material infectado y, para esa época, la infección debe haber estado bien avanzada en algunas de las bases de las hojas. Este es el único sitio por donde el material infectado pudo haber sido trasmítido. El único agente que se encuentra en la base de estas hojas y que se mueve a las flores situadas en la base de las hojas de otros árboles, son las hormigas, las cuales están constantemente subiendo y bajando por los tallos de tales plantas. En la vecindad inmediata hay algunos árboles muy jóvenes y otros viejos cerca de las plantas previamente infectadas. No se encontraron hormigas en los árboles muy jóvenes, aunque, en otras zonas, pueden verse ocasionalmente en tales plantas. En los árboles viejos no se observó hormiga alguna ascendiendo o descendiendo por el tallo, aunque ocasionalmente lo hacen. Cuando se cortan plantas viejas, se encuentran hormigas y comejenes en sus coronas, pero parece que
ellas viven allí permanentemente y no viajan de un árbol a otro como en el caso de plantas jóvenes. Una posible explicación podría ser que las hormigas visitan las plantas por sus flores; por lo tanto ellas normalmente visitan plantas en floración. En el caso de palmas entre la floración inicial y la completa, la cual constituye el período más susceptible de la enfermedad, el suministro de flores caídas no es tan grande como en árboles en plena producción y de aquí que es necesario para ellas visitar muchos árboles para obtener una cantidad adecuada. En los árboles viejos, el suministro es más adecuado y de aquí que no es necesario que se muevan de un árbol a otro para obtener ese suministro. Puede haber otra explicación pero se mantiene en pie el hecho de que este agente sea visto constantemente subiendo y bajando en plantas jóvenes en floración mientras escasamente puede verse en árboles sin flores y probablemente muy ocasionalmente en árboles viejos. Es también muy probable que una hormiga al dejar un árbol infectado preferiblemente seleccionaría otro árbol donde las flores estuvieran más a su alcance, esto es, un árbol joven en fructificación. Esto explica por qué los árboles corrientemente infectados en el campo son los jóvenes en fructificación y por qué la enfermedad parece moverse de un árbol a otro en estrecha proximidad, ya que las hormigas viajan al árbol más cercano y adecuado y no recorren distancias innecesarias.

Otro agente que se encuentra constantemente en troncos enfermos es Rhynchosphorus y no hay duda que éste ayuda a propagar la enfermedad, sobre todo cuando se trata de distancias largas. Observamos uno de estos insectos en un tronco caído y enfermo que había permanecido en el suelo por algún tiempo. Dicho insecto llevaba adherido a su cuerpo pedazos de ese material. Es claro que dichos pedacitos podrían fácilmente ser llevados por el insecto cuando hiciera su visita a la corona de otro árbol. Este asunto necesita un estudio posterior sobre todo con referencia a las hormigas ya que algunos tipos de ellas pueden estar relacionados con la difusión de la enfermedad y un estudio de la conducta peculiar podría explicar mejor algunos de los puntos en controversia. Sin embargo, desde el punto de vista del control, no es de gran importancia inmediata.

RESISTENCIA A LA ENFERMEDAD

Es un hecho de observación común que, aún en campos muy infectados, algunos árboles sobreviven y alcanzan una edad después de la cual sólo ocasionalmente contraen la enfermedad. Mientras que esto podría ser atribuido puramente a la casualidad, siempre queda la posibilidad de que podría existir tipos resistentes o inmunos. Se cree que la planta N° 23 del experimento D pertenece probablemente a uno de tales. Se recordará que de todos los árboles tratados en el experimento, cuatro están aún vivos. Tres de éstos fueron tratados en el suelo con material infectado pero su supervivencia puede escasamente ser atribuido a resistencia ya que la evidencia ha demostrado que en ausencia de daños en la base de las palmas, tal
tratamiento no conduce a la infección. Sin embargo, en el árbol N° 23 el cuadro es diferente. Todos los árboles tratados en las axilas de las hojas, con material infectado con la excepción de este último contrajeron la enfermedad rápidamente. Se examinó la corona de este árbol alrededor de un mes después que los otros habían muerto y se los había cortado, encontrándose en las axilas de las hojas, los pedazos de material infectado que habían sido colocados allí, lo cual indica que no se habían caído o que no habían sido removidos. En Marzo, nuevamente se colocó material fresco en las axilas de las hojas pero hasta el presente, cinco meses después, no se observaron signos de infección. Además este árbol junto con otro adyacente no tratado y que justamente había empezado a florecer, había sido rodeado por un círculo perfecto de árboles infectados, durante un periodo de siete meses. Los otros tres murieron de infección natural alrededor de hace tres meses, pero el N° 23 continuó saludable en un “mar” de infección, aunque otro árbol, no tratado y a unas pocas hileras más lejos, murió posteriormente. Creemos que esto se debe a la alta resistencia o inmunidad de dicha planta. Más adelante se efectuará un trabajo utilizando este árbol.

ALGUNAS OBSERVACIONES

A base de observaciones generales, somos de opinión que cuando la infección tiene lugar en las axilas de las hojas inferiores con inflorescencias secas, se facilita la entrada del nemátodo dentro de la planta y se obtiene los síntomas normales que se ven en el campo. Este tipo de infección es trasmitido por hormigas y posiblemente también por Rhyncophorus, cuando la infección tiene lugar en las hojas superiores; con inflorescencias sin abrir, la entrada del nemátodo dentro del tallo es difícil. Esto produce los síntomas de hojas quebradas y la infección está muy avanzada en la corona, antes de que la zona roja descienda dentro del tallo. Johnson menciona este tipo de infección. Creemos que las hormigas son altamente responsables de este tipo de infección, pero es mucho más probable que se deba a Rhyncophorus ya que este insecto prefiera visitar el área donde están localizados los tejidos blandos.

CONTROL

La quema de los árboles infectados tan pronto como sea posible, recomendada por Nowell, es la medida indicada. El método de hacerlo, debe ser el descrito por Johnson: quemarlos en pie y no cortándolos como lo recomendó Nowell. En el método descrito por este último, las hormigas son dispersadas de las bases de las hojas infectadas y visitan de prisa otras palmas, propugando más rápidamente la enfermedad. Cuando se usa el método descrito por Johnson, debe matarse las hormigas que se encuentran en la base de las hojas, lo cual ocasiona una reducción en la población de hormigas de esas zonas. Es interesante observar que en los datos
dados por Johnson en su campaña de control, en el segundo año después que ésta comenzó, hubo un aumento en el número de árboles infectados. Posteriormente, la incidencia de la enfermedad decreció más rápidamente. Mientras que este método ayuda considerablemente, no elimina infecciones que, como se ha visto en el primer caso de infecciones naturales observadas en una planta junto a los experimentos, ocurren en un período antes que la planta pueda normalmente ser quemada en el campo. Esto podría ser responsable del pequeño porcentaje de pérdidas que aún se sucedían después que la campaña había sido llevada a cabo durante seis años. En el caso de Rhyncophorus, la quema normal sirve para eliminar este factor, pero cuando son hormigas, deben emplearse medidas especiales de control y resultaría, según nuestra opinión, un combate más rápido y eficiente. Somos de opinión que el control de esta enfermedad es esencialmente un problema entomológico. No podría ser factible el control de todas las hormigas de una plantación, pero en áreas infectadas, el empleo en los árboles de bandas con materiales que las investigaciones entomológicas han demostrado ser efectivos en el control de estos insectos, se sugiere con miras a obtener un control completo y eficiente.

Los resultados obtenidos no sugieren la construcción de zanjas de aislación. La conclusión de Johnson de que los drenes en suelos arcillosos pesados actúan como zanjas aisladoras, puede posiblemente obedecer al hecho de que las hormigas quizás prefieren moverse en la dirección donde está la tierra seca, y no cruzar los drenes que tienen pantano o están llenos de agua. Puede ser que no se necesite otra clase de drenaje, sino el requerido para el desarrollo adecuado de las palmas.

En la zona de Puerto Cabello, en los campos con riego, los canales están construidos a lo largo de la base de los tallos, estando el agua constantemente en contacto con un lado de la base del árbol durante los períodos de riego. Esta es una mala práctica y conduce a la pudrición del lado de la base que constantemente está mojado. Es enteramente posible, ya que las medidas de control no se están llevando a cabo, que los pedazos de material infectado, los cuales permanecen pudiéndose en el suelo, pueden ser llevados en el agua y causen infección a través de daños en la base de otras plantas, como se ha visto que ocurre en los experimentos. A pesar de los consejos dados durante muchos meses, este método de riego continúa, y aún en campos en los cuales posteriormente se ha ejecutado zanjas de riego, sigue el mismo procedimiento.

CONCLUSION

La evidencia acumulada, conduce a considerar que, en la transmisión, en el campo, de la enfermedad anillo rojo, el nemáctodo Aphelenchus coccophilus, no se mueve a través del suelo, ni sube a las axilas de las hojas donde produce la infección, sino que es llevado por hormigas y el insecto Rhyncophorus palmarum.
El problema de control es principalmente entomológico y el combate de las hormigas es necesario además de la quema previa llevada a cabo.

SUMARIO

1. — Se dió las razones para el presente trabajo sobre el anillo rojo.
2. — Se hizo una descripción de los síntomas de la enfermedad.
3. — Se describió los experimentos en los cuales se trataron árboles sin fructificar, árboles jóvenes en período de fructificación y árboles viejos con material infectado, en el suelo y axilas de las hojas respectivamente.
4. — Se dio los resultados de estos experimentos.
5. — En la discusión de los resultados, surgen los siguientes puntos:
 a. La infección no comienza en el área radicular, sino en las axilas de las hojas de la corona.
 b. Los síntomas externos de la enfermedad se vuelven evidentes alrededor de dos meses después de la infección.
 c. El organismo no se mueve a través del suelo de una planta a otra, ni sube a los árboles.
 d. Si el organismo vive en el suelo, lo hace en una forma que no produce infección en las plantas.
 e. La infección es trasmitida de una planta a otra por medio de los ácaros y Rhyncophorus palmarum.
7. — El combate de las hormigas además de la quema, es necesario para asegurar el control más rápido de la enfermedad.
8. — Se presenta la evidencia sobre alta resistencia o inmunidad de una planta a la enfermedad.
9. — Se concluyó, que el control de la enfermedad es esencialmente un problema entomológico.

Reconocimiento.

Deseamos expresar nuestro reconocimiento y le damos las gracias al Sr. Don Enrique Heemsen por el permiso para efectuar los ensayos en la hacienda “La Salina” y al Sr. Germán Gil, gerente de la misma por su generosa asistencia y ayuda en todas las fases del trabajo.

REFERENCIAS

— 123 —
<table>
<thead>
<tr>
<th>Nº</th>
<th>Tipo</th>
<th>Infectada 9-11-49</th>
<th>28-11-49</th>
<th>9-12-49</th>
<th>19-12-49</th>
<th>5-1-50</th>
<th>14-1-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Sin fructificar</td>
<td>En suelo. Hojas verdes</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Cortada. Anillo rojo en la base del tallo, no encima</td>
</tr>
</tbody>
</table>

124
<table>
<thead>
<tr>
<th>Nº</th>
<th>Tipo</th>
<th>Infectada 9-11-49</th>
<th>28-11-49</th>
<th>9-12-49</th>
<th>5-1-50</th>
<th>14-1-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Sin fructificar</td>
<td>En las axilas de las hojas. Hojas amarillas</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>—</td>
</tr>
</tbody>
</table>
CUADRO 3. — Experimento C

<table>
<thead>
<tr>
<th>Nº</th>
<th>Tipo</th>
<th>Infectada 9-11-49</th>
<th>28-11-49</th>
<th>9-12-49</th>
<th>5-1-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Joven en fructificación</td>
<td>En el suelo, todas las hojas sanas</td>
<td>Sin cambio</td>
<td>Cortada. Totalmente sana</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Joven en fructificación</td>
<td>En el suelo, todas las hojas sanas</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
</tr>
<tr>
<td>5</td>
<td>Joven en fructificación</td>
<td>En el suelo, todas las hojas sanas</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
</tr>
<tr>
<td>6</td>
<td>Joven en fructificación</td>
<td>En el suelo, todas las hojas sanas</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
</tr>
<tr>
<td>7</td>
<td>Joven en fructificación</td>
<td>En el suelo, todas las hojas sanas</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
</tr>
<tr>
<td>8</td>
<td>Joven en fructificación</td>
<td>En el suelo, todas las hojas sanas</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
</tr>
</tbody>
</table>
CUADRO 3. (Continuación)

<table>
<thead>
<tr>
<th>Nº</th>
<th>Tipo</th>
<th>14-1-50</th>
<th>25-1-50</th>
<th>10-2-50</th>
<th>28-3-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Joven en fructificación</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Joven en fructificación</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
</tr>
<tr>
<td>5</td>
<td>Joven en fructificación</td>
<td>Hojas bronceadas</td>
<td>Más bronceado</td>
<td>Hojas secas. Cortada. Anillo rojo en base de tallo.</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Joven en fructificación</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio. Sana, probada con hueco</td>
<td>Hojas colgadas cortadas. Sana, probada con un hueco</td>
</tr>
<tr>
<td>7</td>
<td>Joven en fructificación</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
</tr>
<tr>
<td>8</td>
<td>Joven en fructificación</td>
<td>Sin cambio, salvable, probada con hueco en el tallo</td>
<td>Sin cambio</td>
<td>Sin cambio. Sana, probada con un hueco</td>
<td>Hojas colgando cortadas. Sana, probada con un hueco</td>
</tr>
</tbody>
</table>
CUADRO 3. (Continuación)

<table>
<thead>
<tr>
<th>Nº</th>
<th>Tipo</th>
<th>24-4-50</th>
<th>25-5-50</th>
<th>Junio</th>
<th>Julio</th>
<th>Agosto</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Joven en fructificación</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Joven en fructificación</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Hojas inferiores cayendo pero verdes</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
</tr>
<tr>
<td>5</td>
<td>Joven en fructificación</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>Joven en fructificación</td>
<td>Hojas superiores cayendo</td>
<td>Hojas caídas amarillas. Cortadas. Anillo rojo encima</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>Joven en fructificación</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Hojas erectas quebradizas sin anillo rojo en el tallo</td>
<td>Hojas inferiores cayendo. Sin anillo rojo en el tronco</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>Joven en fructificación</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
</tr>
</tbody>
</table>
CUADRO 4. — *Experimento D*

<table>
<thead>
<tr>
<th>Nº</th>
<th>Tipo</th>
<th>Infectada 9-11-49</th>
<th>28-11-49</th>
<th>9-12-49</th>
<th>5-1-50</th>
<th>14-1-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Joven en fructificación</td>
<td>En las axilas de las hojas. Todas las hojas sanas</td>
<td>Nueces cayendo. Cuatro hojas bronceadas</td>
<td>Cortada. Sin síntomas de anillo rojo</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>Joven en fructificación</td>
<td>En las axilas de las hojas. Todas las hojas sanas</td>
<td>Cayendo nueces jóvenes. Una hoja bronceada</td>
<td>Sin cambio</td>
<td>Bronceado</td>
<td>Cortada. Anillo rojo marcado</td>
</tr>
<tr>
<td>23</td>
<td>Joven en fructificación</td>
<td>En las axilas de las hojas. Todas las hojas sanas</td>
<td>Cayendo nueces jóvenes. Dos hojas bronceadas</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Mejorando</td>
</tr>
<tr>
<td>24</td>
<td>Joven en fructificación</td>
<td>En las axilas de las hojas. Todas las hojas sanas</td>
<td>Cayendo nueces jóvenes</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
</tr>
<tr>
<td>25</td>
<td>Joven en fructificación</td>
<td>En las axilas de las hojas. Todas las hojas sanas</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Cayendo nueces jóvenes</td>
<td>Hojas colgando más nueces caídas</td>
</tr>
<tr>
<td>26</td>
<td>Joven en fructificación</td>
<td>En las axilas de las hojas. Todas las hojas sanas</td>
<td>Sin cambio</td>
<td>Sin cambio</td>
<td>Cayendo nueces jóvenes</td>
<td>Todavía cayendo nueces</td>
</tr>
</tbody>
</table>
CUADRO 4. (Continuación)

<table>
<thead>
<tr>
<th>Nº</th>
<th>Tipo</th>
<th>17-1-50</th>
<th>25-1-50</th>
<th>10-2-50</th>
<th>13-50</th>
<th>Agosto</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Joven en fructificación</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>Joven en fructificación</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>23</td>
<td>Joven en fructificación</td>
<td>Mejorando.</td>
<td>Mejorando.</td>
<td>Mejorando.</td>
<td>Sana</td>
<td>Sana</td>
</tr>
<tr>
<td>24</td>
<td>Joven en fructificación</td>
<td>Sana en el tallo, probada con hueso</td>
<td>Algo bronceada</td>
<td>Hojas colgando. Cortadas. Anillo rojo en las hojas, no en tallo</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>26</td>
<td>Joven en fructificación</td>
<td>Bronceado</td>
<td>Más bronceado. Anillo rojo en todas partes excepto raíces</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>