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ABSTRACT
Integrated Pest Management (IPM) is a pest
management system that, in the socioeconomic
context of farming systems, the associated
environment and the population dynamics of the
pest species, utilizes all suitable techniques in a
compatible manner as possible to maintain the pest
population levels below those causing economic
injury. This article covers the principal aspects of
the interaction between Apis mellifera and Varroa
destructor and it describes the classical control
forms applied to reduce the mite negative impact
on colonies. Some examples of IPM activities
that have been done to control this parasite in the
southeast of Buenos Aires province, Argentina
have shown good results. Several products
worldwide have shown good effectiveness as well.
Nevertheless, there are certain risks and hazards
inherent to their use, such as: their negative impact
on human health, resistance phenomena, loss of
benefi cial insects and native fauna, environmental
pollution and drug residues in the hive products
harmful for human consumption. The development
of acaricide resistance in V. destructor populations
and the possibility of incorporating contaminants
in colonies by means of this type of treatment
have promoted the addition of new molecules to
minimize these disadvantages. The application of
organic acids, essential oils and their components
have become a worthwhile alternative. It can
be concluded that to achieve an integrated
management of V. destructor entails a change of
mind for beekeepers and the active participation
of all actors involved in the beekeeping sector to
promote scientifi c activities aimed to discovering
and developing new tools to be incorporated in an
IPM Program against V. destructor.
Key words: Apis mellifera colonies, Varroa destructor,
Integrated Pest Management, synthetic acaricides.

RESUMEN
El Manejo Integrado de Plagas (MIP) es un sistema
de manejo que en el contexto socioeconómico de
los sistemas agrícolas, asociado al ambiente y a la
dinámica poblacional de las especies plaga, utiliza
las técnicas apropiadas de una manera compatible
para mantener, las poblaciones de la plaga por
debajo de los niveles que causan daño económico.
Este artículo cubre los principales aspectos de la
interacción entre Apis mellifera y Varroa destructor
y describe las formas clásicas de control aplicadas
para reducir el impacto del ácaro en las colonias.
Algunos ejemplos de las actividades de manejo
integrado de plagas realizadas para controlar este
parásito en el Sureste de la provincia de Buenos
Aires, Argentina, mostraron buenos resultados.
Existen algunos productos acaricidas de síntesis
en el mundo, que presentaron buena efectividad.
Sin embargo, el desarrollo de resistencia a los
acaricidas en poblaciones de V. destructor y la
posibilidad de incorporación de contaminantes en
las colonias por este tipo de tratamientos, se han
transformado en cuestiones de gravedad. Esto
ha promovido la búsqueda de nuevas moléculas
para minimizar estas desventajas. Ácidos
orgánicos, aceites esenciales y sus componentes
se han convertido en una valiosa alternativa.
El éxito de la implementación de herramientas
para el Manejo Integrado de Varroa involucra
un cambio de mentalidad en los apicultores y la
participación activa de todos los actores del sector
apícola, para promover actividades científi cas que
ayuden a desarrollar nuevas alternativas para ser
incorporadas en Programas Regionales de Manejo
Integrado de esta parasitosis.
Palabras clave: Colonias de Apis mellifera, Varroa
destructor, manejo integrado de plaga, acaricidas
sintéticos.
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INTRODUCTION
The sexual reproduction of many crops and most
wild plants depends on animal pollination by
insects, birds, and bats, among others. Insects
play the most important role in this respect
(Klein et al., 2007). Among them, solitary and
social bees provide the greatest contribution to
the development of angiosperms (Brown and
Paxton, 2009). This is explained in part, by
the massiveness and homogeneity of modern
agriculture, due to which most crops depend
on honeybee-mediated pollination (Aizen et
al., 2008). Even though global trends seem to
indicate that bee population is growing (Aizen et
al., 2009), there is strong evidence that a marked
decline in pollinator populations has taken place
in different parts of the world (Biesmeijer et al.,
2006).
The European honeybee Apis mellifera L. (Figure
1) is the most important crop pollinator, with an
exhaustively studied biology. Its distribution is
wide, spanning from Europe all the way to Africa
and Asia (Smith, 1991). Currently it can also be
found in America, owing to colonies transfer by
beekeepers for production purposes (Delaplane
and Mayer, 2000). The relevance of A. mellifera
for humanity lies in its being responsible for
pollinating 77% of the food resources that sustain
human population worldwide (Buchmann and
Nabhan, 1996). However, as social individuals,
colonies exert a double attraction for the pests
and pathogens affecting them. On the one hand,
colonies represent a high density of potential
hosts, and, on the other, a large assembly of
individuals with similar genetic characteristics
(Schmid-Hempel, 1995). In the colony,
resources abound, there being protein (pollen)
and carbohydrates (honey), which are potential
sources of food for other individuals circulating in
the apiaries (Delaplane and Mayer, 2000).
A. mellifera is affected by various living
organisms. Among the most virulent ones, virus,
bacteria, fungi, beetles and mites (Genersch,
2010) should be underlined. Mites parasitizing
A. mellifera have become a severe concern
worldwide, as they threaten the survival of bee
colonies and jeopardize commercial beekeeping
development (Sammataro et al., 2000). In view
of the negative impact that Acarapis woodi
(Rennie, 1921), Tropilaelaps clareae (Delfi no

and Baker, 1961), Varroa jacobsoni (Oudemans,
1904) and Varroa destructor (Anderson and
Trueman, 2000) exert on bee colonies, these
mites species have attracted the attention of
the scientifi c community. Among the above
mentioned, V. destructor (Figure 2) causes
the most devastating effects on European bee
colonies worldwide (Rosenkranz et al., 2010).
The ectoparasitic mite V. destructor is native
from the Asiatic bee Apis cerana, and was able
to parasitize A. mellifera when beekeepers
transferred European bees from Europe to the
east of Russia in the fi rst half of the last century,
resulting in the sympatric distribution of both
bees (Oldroyd, 1999). The negative effects of
V. destructor on bees result from the lack of
defensive co-evolutionary mechanisms that A.
mellifera has, which is explained by the limited
time during which they have been in contact
(Rath, 1999). The mite’s life cycle can be divided
into two stages: the fi rst one is called the phoretic
phase, where fertilized female mites are on
adult bees and are able to spread among bees
and / or colonies. The second one, so-called
the reproductive stage, is that in which female
mites enter brood bee cells to reproduce (Maggi
et al., 2010a). Male mites have their quelicera
adapted to transfer sperm, and use it to fecund
female mites. Then, males die inside the cells
due to starvation. The worldwide distribution
of V. destructor is strongly connected to its
own specialization and adaptation to phoresy
(Akimov et al., 1988), but foremost to human
intervention (Eguaras and Ruffi nengo, 2006).
Broadly speaking, the negative effects generated
by parasites vary and can be differentiated into:
direct damage caused by the mite, and collateral
damage resulting from mite infestation. The fi rst
category comprises weight loss, decreased half-
life of parasitized bees (Marcangeli et al., 1992;
Bowen-Walker and Gunn, 2001; Duay et al.,
2002), and reduction of haemolymphatic proteins
and haemocites with a subsequent lowering of
the immune response in parasitized individuals
(Gregory et al., 2005). The damage caused by
mites on individual bees is mostly expressed
in the larval and pupal stages. This depends
on the number of mother mites parasitizing
the brood. For instance, a single female V.
destructor can be blamed for an average loss
of 7% of bee weight (Rosenkranz et al., 2010).
With regard to the indirect damages caused by
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Figure 1. Worker honey bee of Apis mellifera foraging in Lavandula
offi cinalis.

Figure 2. Scanning electron microscope image of female mite of V.
destructor (ventral view) Eguaras, 1993.
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the mite, V. destructor inoculates a wide variety
of microorganisms by feeding processes. To
date as many as 18 different viruses have been
isolated in bee colonies (Chen and Siede, 2007),
most of them vectored by Varroa. Prior to the
appearance of mites in European colonies,
viruses were not considered a health issue for A.
mellifera (Yue and Genersch, 2005). Currently,
it has been determined that different types
of viruses live in bee colonies in latent form,
and become highly infective when high mite
infestation occurs in the beehive (Ball and Bailey,
1997). Additionally, V. destructor can induce bee
immunosuppression, which would enhance virus
infections (Yang and Cox-Foster, 2007). There
is also clear evidence regarding V. destructor
creation of ideal conditions for the development
of the fungal pathogen Ascosphaera apis inside
the beehive, the causative agent of chalkbrood
breeding (Puerta et al., 1990). De Rycke et al.
(2002) reported that mite is capable of carrying
on it body Paenibacillus larvae spores, although
it is not clear whether such load is suffi cient to
develop American foulbrood in healthy colonies.
Recent studies have hypothesized that the hives
critical loss seen in recent years in both Europe
and USA would be the result of synergistic effects
produced by the combination of V. destructor
and the microsporidium N. ceranae (Anderson
and East, 2008).
Since their introduction, synthetic plaguicides
have been the preferred choice by human beings
and pest control. Indeed, they play a key part in the
full-scale agriculture production. Nevertheless,
there exist certain risks and hazards inherent
to their use, such as their negative impact on
human health, loss of benefi c insects and native
fauna, environmental pollution, drug residues
in products meant for human consumption and
resistance phenomena.
The evolutionary time of the V. destructor/A.
mellifera parasitic system is brief, and leads
to the regulatory mechanism defi cit of mite
populations by their hosts (Peng et al., 1987).
Therefore, to maintain healthy bee colonies,
mite populations should be controlled by using
acaricides. When parasitosis emerged in Europe
and America, researchers postulated that a three-
year parasite cycle was necessary to cause the
colony death (Ritter, 1981). Today it is known that
unless colonies receive an acaricide treatment,

they will die within the fi rst year especially in
temperate climates. Historically, the chemicals
used by beekeepers to control Varroa mite were
synthetic acaricides.These belong to different
chemical types (pyrethroids, organophosphates,
amidines, organic acids), and confer their own
dynamics inside bee colonies. These features
allow to elucidate the chemical behavior of each
active ingredient inside the hive and to determine
its residuality and likelihood of generating
resistance phenomena in mite populations.
Initially, chemicals were supplied inside beehives
by spraying, evaporation, dusting or spraying.
With the passage of time, researchers have tried
to attain better acaricide management methods
inside colonies over time. By means of bees
trophallaxis phenomenon (i.e., food exchange
from bee to bee), acaricides were assayed on a
systemic basis in the hive to ensure a rapid and
even drug distribution. Nevertheless, one of the
drawbacks that this administration form had, is
that the acaricide is not able to kill mites inside
the cells. Hence systemic acaricides are more
suitable when used in the absence of breeding or
when it is greatly reduced. Other control methods,
based on the long stay of active ingredients in
the hive, have allowed the active ingredient to act
for a longer period of time, as mite emerges from
brood cells. Several pyrethroids have shown a
good acaricidal effect when incorporated into
PVC strips between the frames of the brood
chamber. Such administration is effective, even
on beehives with breed throughout the year.
From late 1980´s to early 1990´s, the use of
fl uvalinate (a synthetic pyrethroid that acts on
sodium channels) to control mite prevalence
resulted in effi cacies approaching 100% (Herbert
et al., 1988). The high recorded effi cacies, coupled
with the easy application of these treatments
inside bee colonies, led to an extensive use
of this acaricide for years, generating a strong
selective pressure on mite populations with
the consequent appearance of mite-resistant
phenotypes in many countries worldwide (Milani,
1999). Moreover, cross-resistance phenomena
between pyrethroids fl uvalinate and fl umethrin
in V. destructor populations were also reported
(Milani, 1995, Thompson et al., 2002). In
areas where these processes were identifi ed,
alternative methods, such as coumaphos
(organophosphate acetylcholinesterase inhibitor)
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Figure 3. Homemade acaricide treatment prepared by beekeepers
(Eguaras and Ruffi nengo, 2006).

and amitraz (formimidina) were implemented
(Elzen and Westervelt, 2002). However, the
intensive and abusive use of these molecules
to control Varroa mite, also led to resistance
episodes in the United States, Mexico and
Europe (Elzen et al., 1999; Mathieu and Faucon,
2000; Rodriguez-Dehaibes et al., 2005).
Another issue inherent to parasite control
is the use of homemade drugs prepared by
beekeepers (Figure 3). This practice is deeply
rooted in beekeeping and is one of the most
important causes explaining the development
of the resistance phenomena of the mite
populations being treated in Argentina (Eguaras
and Ruffi nengo, 2006). In addition to the
resistance issues arising from the excessive
use of synthetic acaricides, there exist residue
problems in the different colonies matrices.
Each acaricide treatment inevitably affects the
quality of several hive products (Wallner, 1999).
Beeswax is composed of a high fatty acid
content of high molecular weight, which renders
it suitable for lipophilic substances accumulation,
such as coumaphos and fl uvalinate (Bogdanov,
2006). Moreover, honey is an aqueous matrix
in which acaricides can solubilize hydrophilic

chemicals (examples of these are organic acids
and thymol). Thus, they can pass directly to the
honey and affect the quality of the fi nal product.
These active ingredients have characteristics
that make them much less harmful than stable
lipophilic agents because their stability is
signifi cantly lower when compared to lipophilic
acaricides (Eguaras and Ruffi nengo, 2006).
Lipophilic acaricides are incorporated into the
wax, are very stable and do not degrade easily in
this medium. However, when using higher doses
than those recommended, these agents can be
accumulated. Wax has a large storage capacity
of lipophilic substances, and wax recycling cans
double the original amount of chemicals stored,
depending on the chemical used (Imdorf et al.,
2003). The most commonly detected acaricides
in wax are fl uvalinate and coumaphos (Wallner,
1999). The destruction of the honeycomb is
probably the only way in which acaricides can be
completely eliminated. Thus, alternative recycling
forms should be sought, in order to, at least,
reduce the concentration of the lipophilic toxic
agents tested. A special mention should be made
of amitraz. This lipophilic acaricide, belonging to
the family of amidines, is very unstable in both



154

Vol. 32 (2)  ZOOTECNIA TROPICAL 2014

wax and honey, and it degrades very quickly.
The wax seems to have a signifi cant accelerating
effect on amitraz degradation (Wallner, 1999),
since it is completely degraded in 1 day in this
matrix, and, in honey, in about 10 days (Korta
et al., 2001). Amitraz instability emerges as a
key feature when honey analyses are made
to detect this acaricide. Studies carried out by
Maver and Poklukar (2003) reported very low
levels or absence of amitraz residues in honey.
Bee movement inside the hive also produces
the distribution of chemicals which reach the
different wax layers with which the comb surface
is coated. This movement can cause propolis
and virgen beeswax contamination (Wallner,
1999). Lipophilic substances can migrate from
wax to honey, staying there for some time before
they degrade, being detectable in amounts
measurable by chemical analysis (Kochansky
et al., 2001). Therefore, much emphasis should
be placed on the stability that this chemicals
have in a hydrophilic matrix like honey. Greek
researchers found that fl uvalinate in honey
remains stable for over 8 months remaining
unchanged by the effect of temperature (Tsigouri
et al., 2001). Korta et al. (2001) expanded this
study to substances such as bromopropylate,
coumaphos, chlordimeform and fl umethrin, and
results for all of them displayed persistence in
honey for about 9 months.
On the other hand, there is another type
of lipophilic acaricides, those with volatile
compounds like essential oils. During the
application, their compounds evaporate very
quickly and only a small amount remains in
wax. The concentrations of these compounds
can be detected in honey at very low rates.
However, essential oils are substances with
intense aromas and able to alter honey taste.
Honey in which thymol, camphor and menthol
had been added separately, showed a change
in astringency and taste. Thymol was the one
with the strongest effect on honey, producing a
signifi cant change in honey taste (Bogdanov et
al., 1999). As a consequence, compounds such
as thymol should be applied far away from nectar
fl ow, to avoid major changes in taste.
The organic acids (formic, oxalic acid, lactic acid)
often used to control V. destructor are also natural
components of honey, and their concentration
can vary within a wide range, depending on

the type of honey. They are diffi cult to detect in
amounts   higher than those naturally occurring in
honey, but just like essential oils, they generate
changes in honey taste, especially when applied
with formic acid near the honey fl ow. Properly
used, thymol, formic and oxalic acids are
excellent tools for the control of V. destructor
(Eguaras and Ruffi nengo, 2006).
The development of acaricide resistance in
V. detructor populations and the possibility
of incorporating contaminants in colonies by
means of this type of treatment (Milani, 1999;
Wallner, 1999) have promoted the addition of
new molecules to minimize the disadvantages
mentioned above. Among them, the application
of organic acids (Boecking and Trainor, 2007a),
essential oils and their components have
become a worthwhile alternative (Imdorf et al.,
1999; Eguaras and Ruffi nengo, 2006). However,
some studies have reported undesirable effects
of organic substances when they were applied to
A. mellifera colonies (Imdorf et al., 1999; Gregorc
and Smodis-Skerl, 2007), which streeses the
need to implement management strategies
involving much more than a mere change of one
molecule for another.
Integrated Pest Management (IPM) is a pest
management system that, in the socioeconomic
context of farming systems, the associated
environment and the population dynamics of
the pest species, utilizes all suitable techniques
in as compatible a manner as possible and
maintains the pest population levels below those
causing economic injury (Dent 1991). In terms
of strategies for pest control, IPM is the most
modern concept. Its main objective is to apply
the least amount of toxic substances, combined
with the implementation of cultural practices,
with a view to minimizing risks and hazards for
human beings and the environment. IPM is being
successfully applied in more than fi fty countries,
and is focused on prevention and non-chemical
treatments. To achieve this goal, researchers
include continuous controls and reports
about environmental health, as well as pests
recognition and their biology. Finally, with all this
information, researchers are able to conduct a
comprehensive analysis and implement the most
appropriate and safe control strategy.
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Even though IPM is not a basic biological
pest control system using organic drugs, it is
extremely important to include as many organic
substances as possible in control tactics.
Conceptually this entails a change of mind for
beekeepers, and leads to the replacement of
the improper use of synthetic pesticides with a
complete program involving various substances
and strategies to maintain parasite populations
below the economic damage threshold.
Currently, most beekeepers do not apply IPM to
control Varroa, but stick to a scheduled treatment
instead: the use of one or two pesticides, applied
systematically in accordance with a rigid and
predefi ned schedule, carrying out, in many
cases, low parasite prevalence (percentage
of parasite infestation) treatments and, hence,
unnecessary.
According to Eguaras and Ruffi nengo (2006),
four main points remain the cornerstone for a
successful IPM for V. destructor populations:
Tactics to reduce the growth of V. destructor
populations (biotechnical methods)
Monitoring and control, if applicable
Sanitary treatments with toxicologically and
environmentally friendly substances.
Search for hosts (bees) tolerant to parasites.

MATERIALS AND METHODS

Biotechnical methods
These methods involve a series of colony
manipulations to remove mites from the colony
and limit parasite population growth. They are
based on knowledge about V. destructor biology
(i.e., preference for drone cells) or methods
developed by beekeepers (multiplication of
hives). These methods are usually tied to
beekeeping hobbyists, but still some techniques
could be incorporated in an integrated pest
management program at a certain time of the
year. A method used to reduce mite populations
is the usage and replacement of combs with
large numbers of drone cells. It is primarily based
on parasites predilection for this type of brood
cells. It is estimated that for every mite entering
a workers brood cell, about 7 or 8 mites enter a
drone cell (Eguaras and Ruffi nengo, 2006). This

natural phenomenon is worth considering since
by eliminating drone cells, Varroa population
could be reduced in a natural manner.
Another method to reduce mite population, quite
similar to the one described earlier, consists in
incorporating drone combs and subsequently
removing them from the colonies once they are
capped. This methodology also takes advantage
of parasites preference for drone cells, and
works well to reduce the number of mites in the
hives. However, just like the previous one, it does
not seem to be suffi cient to effectively control
parasitic infections and should be complemented
with another type of control. However, the
continuous addition and removal of drone combs
may decrease parasite populations. Calis et al.
(1999) applied the technique of consecutively
replacing 5 drone comb frames, and was able
to reduce the parasite population by 93%. The
greater the number of combs used, the more
effective the method. This is widely used in
Cuba, where beekeepers place one drone comb
each month in the colony and keep the parasite
population under control (Verde Jiménez and
Bande Gonzalez, 2005). The use of combs
“traps”, so-called entrapment method, is quite
similar to the one just described only that the bee
queen is excluded. By means of this procedure,
beekeepers are able to manage the amount of
brood available for V. destructor infestation. It
consists in removing the queen for 8 to 9 days
in a box containing the comb, thereby forcing it
to lay its eggs in the comb. Then, after the cells
have been capped and before the young bees
emerge, the frame is removed from the hive.
This procedure can be repeated three times,
and has yielded good results in some European
countries. The three stages of this method have
been sketched and described by Fries (1993)
as follows: the queen is introduced, together
with a clean comb (without brood), in a queen
excluder (this box limits the movement of the bee
queen only to the comb) for about 8 to 9 days,
during which the brood is close to be capped.
The second stage involves removing the comb
from the excluder and placing it elsewhere in
the beehive brood chamber, placing a clean
comb inside the excluder (with the queen). The
third stage takes place 8 to 9 days later. At this
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moment the fi rst comb is removed from the hive
(and, together with it, the parasites infesting the
capped brood).
The second comb is now transported to the
brood chamber and again, a third clean comb is
introduced inside the excluder. Eight or nine days
afterwards, the second comb is also removed
from the hive and the third one is transferred to
the brood chamber. At this time, the excluder
is taken out from the beehive and the queen is
released. Finally 8 days later, beekeepers need
to remove the third comb trap from the beehive.
This system has come to remove approximately
90% of mites in the hive (Fries and Hansen,
1989). Nevertheless, no more than three combs
should be used, because bee population declines
markedly in hives.
The annual queen bee replacement method
is based on the reproductive biology of A.
mellifera. In the fi rst year, the bee queen only
lays a limited number of male eggs (drones)
and indirectly controls mite infestation increase.
Moreover a greater reproductive activity of a
young queen translates into a strong and, bigger
colony less susceptible to disease (Eguaras
and Ruffi nengo, 2006). Cutting a brood comb
section is a technique that stimulates bees to
build new brood cells generally designed for the
drone. Once the cells are capped, the section
of the comb is cut and burned outside the hive,
removing a portion of the mite population in it.
This procedure can be repeated in a few pictures
during drones breeding season (Eguaras and
Ruffi nengo, 2006).
Nuclei formation is another way to reduce
pest populations in the original colonies. This
technique is generally conducted during late
spring and early summer when the colony is
growing up. It has been noticed that, during
certain times of the year, with the formation of
a nucleus per hive using two capped brood, the
original parasite population may be reduced by
30% (Eguaras and Ruffi nengo, 2006).

Monitoring and control, if applicable
Regarding V. destructor fi eld management,
the best tool beekeepers have is monitoring
parasite populations. This basic tool enables
the early detection of parasites in the hive,
before irreversible damage occurs, keeping

mite population below the economic damage
threshold (Delaplane et al., 2005). The three
methods most often used are: (1) killing mites in
the colony with chemical products; (2) estimating
mite population by sampling immature (drone
and worker brood cells) and adult bees; and
(3) sampling mite natural death rate. Several
detection methods may be used (Branco et
al., 2006) with a greater or lesser degree of
complexity. V. destructor population dynamics
depends on whether conditions as well as on the
type of bee race (Moretto et al., 1991). Hence
each geographical area should be aware of its
own economic damage threshold, as differences
in climate and bee ecotype could exist, resulting
in different Varroa populations’ growth.

Sanitary treatments with toxicologically and
environmentally friendly substances
Natural compounds represent a valid alternative
and a useful tool that can be incorporated into
an integrated pest management program which
contemplates the rotation of existing synthetic
acaricides and minimizes their use. They have low
toxicity to mammals, little environmental impact
and good public acceptance (Isman, 2000). Many
of these natural compounds showed effects on
parasitic bee mites, especially organic acids
and some essential oils (Eguaras et al., 2001a,
Eguaras et al., 2005; Ruffi nengo et al., 2005).
Essential oils are volatile liquid fractions, usually
distillable by steam distillation or hydrodistillation
by water vapor, which contain the substances
responsible for plant aroma. These substances
can be found in fl owers, seeds, fruits, leaves,
bark and roots (Imdorf et al., 1999). They have
been long used as insect repellents. However,
recent researches conducted in several countries
have also confi rmed that they have insecticidal,
bactericidal and fungicidal activity (Isman, 2000).
Toxicity in insects is based on a neurotoxic
effect. Some monoterpenes constituents of
essential oils are competitive inhibitors of the
acetylcholinesterase of the nervous system.
A research carried out by Enan et al. (1998),
points to the octopaminergic nervous system as
insect’s action site. With respect to V. destructor,
several studies were based on natural essences
or its components. By 1998 over 150 essences
had been evaluated in vitro or in vivo (Imdorf et
al., 1999), a number that has steadily grown in
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Figure 4. Organic acaricide treatments applied to colonies of A. mellifera
(Eguaras and Ruffi nengo, 2006).

recent years (Ruffi nengo, 2010). Inside hives,
oils have been applied by spraying, incorporated
with food, and placed inside porous and gel
matrices with varying results (Figure 4). However,
very few have been successful in controlling mite
populations (Imdorf et al., 1999).
Despite the fact that essential oils yielded
encouraging acaricide effects when they were
tested in vitro, they showed high variability
in their fi nal effi cacy when they were applied
inside hives (Mutinelli et al., 1994). The essential
oil composition of each plant species tends to
be unique. Still some species have different
chemotypes which are characterized by certain
variations in their components (Imdorf et al.,
1999). The chemical composition of an essential
oil depends on the state of development of the
plant from which it is extracted, on the parts being
used, on the plant cropping method as well as on
the climatic conditions affecting it (Duran et al.,
2007). Steam distillation, solvent extraction and
pressure produce variations in oils composition.
Undoubtedly the lack of a steady chemical
composition explains the variations in the results
obtained by different researchers (Imdorf et al.,

1999), and so the lack of effective strategic plans
for the control of Varroa parasitizing A. mellifera.
However, certain essential oil components have
revealed good effi cacy in vivo and in vitro Even
though the major components of an essential
oil truly refl ect the biophysical and biological
characteristics of the oil from which it has been
isolated (Ipek et al., 2005), the extent of its impact
remains dependent on its concentration when it
is tested alone or within essential oils (Bakkali et
al., 2008).
Thymol is a phenolic monoterpene present in
many plants such as thyme (Thymus vulgaris),
basil (Osimum basilicum), rosemary (Rosmarinus
offi cinalis), peppermint (Mentha piperita), sage
(Salvia offi cinalis). In the case of thyme, this
compound can reach 50% of the total essential
oil extracted from the plant and has a high
insecticide, bactericide, fungicide and nematicide
capacity. Thymol is the only component of
essential oils widely used in beekeeping. Studies
for V. destructor control have shown effi cacies
between 70% and 95% (Eguaras et al., 2004).
On the other hand, organic acids such as formic,
lactic and oxalic acid are natural components
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of honey (Milani, 1999), and, therefore, non-
polluting substances for hive products. Another
advantage is that there is little chance that V.
destructor develops resistance to them (Milani,
1999). The acaricidal activity of organic acids has
been tested both in vivo and in vitro experiments
(Eguaras and Ruffi nengo, 2006), and has yielded
different effi cacy results. This variability depends
mainly on the acaricide concentrations applied,
on the method of administration, bee ecotype
and weather conditions (Rademacher and Harz,
2006). Fries and Hansen (1989) showed that the
formic acid applied 4 times at a 24 hour interval is
effective in controlling the parasite. Nevertheless,
special care should be taken when formic and
lactic acids are applied. Temperature drastically
affects their release during treatment (Bahraini
et al., 2004).
Oxalic acid has been successfully used in
controlling V. destructor parasiting colonies of
A. mellifera. However, both the concentration
and dosage form of this molecule used in bee
colonies play a key role in their effective miticide
effect (Nanneti et al., 2003). Different studies
have demonstrated that the best outcome in V.
destructor population control is obtained when
the acid is applied at concentrations below
4.5% m /v in sugar solution (De Feudis, 2007,
Rademacher and Harz, 2006).

Search for hosts (bees) tolerant to pests
Another worth mentioning variable of the
parasitic system evolution is bees’ defensive
behavior (hygienic behavior). Hygienic behavior
helps bees detect and remove mite from their
hive. Mite recognition by bees is either for those
placed on adult bees (grooming behavior) or
inside brood cells (cleaning behavior) (Peng et
al., 1987). Both mechanisms appear to combine
and maintain low V.destructor population levels.
Apparently the defensive behavior is more direct
when it comes to killing parasites. Approximately
30% of the mites collected from the bottom of
the hive featured different types of mutilations
caused by bees. Hygienic behavior involves the
ability of some bees to detect, uncap, and remove
infested worker pupae from the brood cells. Apis
cerana effi cacy removes infested brood (Spivak,
1996). This removal behavior of infested pupae
interrupts the reproduction of the fertile mites
inside sealed brood cells. This rate in Africanized

honeybees in Venezuela is about 60% (Principal
et al., 2008). In addition, the immature mites are
killed which decreases the average number of
offspring per mother mite (Fries et al., 1994).
Another kind of mite tolerance by bees has also
been reported by Ibrahim and Spivak, 2006
They mentioned in their work, that there is a
line of bees (factor SMR) which maintains low
mite levels because varroa appears to have low
reproductive success on worker brood. They
found such trait to be a heritable trait, and called
it Suppression of Mite Reproduction (SMR). In
colonies bred for SMR, mites entered worker
brood cells to feed and reproduce. However,
the authors reported that mites died in the cell
without reproducing, produced no progeny,
males only, or progeny too late to mature (Harris
and Harbo, 1999; Harbo and Hoopingarner,
1997). The search for bees tolerant to Varroa is
a continuous fi eld of research whose aim is to
fi nd bee lines that help maintain mite populations
at low levels.

RESULTS AND DISCUSION
Argentine beekeeping industry has boomed
in recent decades, encouraged by a fall in
the output of traditional producing countries
and the subsequent price increase, which
promoted the incorporation of several domestic
producers (SAGPyA, 2009). World production of
honey is about 1.4 million tons per year (FAO,
2008) and America is placed as the second
honey producing continent. Data provided by
the Cadena Apícola Santafesina (2008) has
shown that Argentina contributes to honey
production by 25%, accounting for 70% of the
total production of South America. Beekeeping
has placed Argentina among the top world
producers, ranking fi rst in the honey export
segment (contributing to 20%   of total exports)
and third as a honey producers (contributing
to 6 % of the world total production). Argentina
exports 95% of its own honey production due
to the low domestic consumption and the high
demand coming mainly from European Union
countries. In 2010, Argentina exported 57,487
tonnes of honey worth a total of 173 million
dollars (SENASA, 2010).
V. destructor was fi rst detected in Argentina in
1976. By that time, it was fi rst found in hives
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located at Laguna Blanca, Formosa province
(Montiel and Piola, 1976). It is believed that V.
destructor had entered the country a few years
before, considering that in 1971, beekeepers
from Paraguay had imported honey bee queens
from Japan introducing, for the fi rst time, the mite
in South America (Dietz, 1986). In Argentina,
as in most countries, there are no colonies of
bees able to stand the parasitic effects without
severely damaging them. Therefore, mite
populations should be controlled by beekeepers
to avoid killing the colonies. The ultimate goal is
to reduce these populations and bring them to
acceptable levels that do not curtail productivity
or bee colony survival.
In the framework of various research projects
carried out in Argentina, the fi rst investigations
aimed at shedding some light on the biology
of the parasite and its host. Studies on mite
reproduction and mite seasonal variations
helped the group better understand the
population dynamics of parasites under different
environmental conditions (Eguaras et al., 1996,
Eguaras et al., 2001, Eguaras et al., 2003).
Studies conducted by Eguaras (1988) reported
mite behavioral adaptation to phoresy. Parasites
preferred certain bee body parts to stay in
phoresy. At a population level, it has been shown
that the number of infertile females can vary on
a seasonal basis along with egg-laying (Eguaras
et al. 1994a, Eguaras et al., 1994b, Eguaras et
al., 1995).
Maggi et al. (2009) also detected different
morphotypes of Varroa mite populations
in Argentina. The reason explaining these
morphological variations among different
populations remain unknown, but it has been
hypothesized that the phenotypic expression
may result from the genotypic interactions
between the parasite DNA and its host DNA.
Negative feedback mechanisms seem to be
present at an infrapopopulation level. There is a
strong crowding effect that leads to a reduction
in the number of adult offspring per mother mite
(Eguaras et al., 1995). Brood cells diameter has
also been identifi ed as a physical factor altering
mite reproductive behavior (Maggi et al., 2010a).
Taking into account all these experiences, the
economic damage threshold for mite populations
could be specifi ed and strategies to mitigate the

negative mite effects laid down (Eguaras and
Ruffi nengo, 2006).
Biotechnical methods, such as trap combs, have
been applied with encouraging results in recent
years. Using two combs trap, 65% of the total
mites were removed from the colony. Greater
effectiveness was attained in colonies with a
higher number of parasites (Marcangeli, 2002).
Adding drone combs trap, the effectiveness of
this method increases. However, if worker combs
trap are used, the method effi cacy decreases
(Damiani and Marcangeli, 2006). Moreover this
method has the drawback of limiting the queen
egg-laying activity to only drone brood for a
certain period of time. Therefore, special care
should be taken when using this methodology,
given the resulting decrease in adult bees’
population that could occur in the colony. Hence,
this method should only be used as part of a
comprehensive program or supplemented with
other control techniques.
Resistance phenomena to synthetic acaricides,
such as coumaphos and amitraz, have been
detected in Argentina and neighboring countries,
such as Uruguay. This episode evidenced the
need to seek new alternative molecules for
parasite management (Maggi et al., 2008, Maggi
et al., 2009, Maggi et al., 2010b, Maggi et al.,
2011a). Different laboratory experiments have
identifi ed promising essential oils (and/or its
components) to be used against V. destructor
(Eguaras et al., 2005, Ruffi nengo et al., 2002).
Ruffi nengo et al. (2005) showed that essential oils
obtained from Schinus molle and Acantholippia
seriphioides had an interesting acaricidal
effi cacy against V. destructor in vitro. These
studies also reported that thymol and carvacrol
were the main components of A. seriphioides
essential oil, while - y -phellandrene were
major components of S. molle oil. Presently
our group is evaluating the acaricidal effects
of these isolated components and their toxic
binary interactions against Varroa mite in vitro,
as a strategy to solve the acaricidal variability
effi cacy reported for oils when they are applied
in the fi eld (Eguaras and Ruffi nengo, 2006).
New research lines are currently evaluating the
application of native propolis and natural extracts
as new antiparasitic agents against V. destructor
in Argentina (Damiani, 2010a, Damiani et al.,
2010b).
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Several fi eld experiments have shown that
thymol (Eguaras et al., 2004); oxalic acid
(De Feudis, 2007) and formic acid (Eguaras
et al., 2001, Eguaras et al., 2003) are an
effective alternative tool for parasite population
management. However special attention should
be paid to external temperatures, concentrations
of acaricides administered and colony population
dynamics to avoid undesirable effects on bees.
In the case of oxalic acid, the most important
variable in the ultimate effectiveness of the
formulation is the amount of brood present at
the time of application (Marcangeli et al., 2003;
Marcangeli and García 2004). When formic
acid and thymol are used, high concentrations
and high external temperatures can produce
a large release of the acaricide in a short time
and generate queen bee replacement, stop
egg layment by queen and even bee colony
swarming (Eguaras et al. 2001, Eguaras et al.,
2003, Eguaras et al., 2004).
Nowadays, Argentina counts with several
synthetic acaricide products registered for
controlling the mite V. destructor, to be applied
in different ways on beehives. In spite of the
diversity, the vast majority are based on three
active agents: amitraz (Amivar®, Colmesan®,
Varrotraz®, AB-Var®), coumaphos (Cumavar®,
Perizin®), fl umethrin (Flumevar®, Bayvarol®).
Products with organic substances, based on
oxalic acid(Oxavar®, Apioxal®) or Thymol (AB-
Var Bio®, Natural Var®), are rarely used by
beekeepers.
Twenty years ago, registered commercial
products were few and, besides, very expensive.
This fact, led producers to manufacture controlling
agents themselves (home-made products) in
wood boards impregnated with fl umethrine
and fl uvalinate or mixtures of cornfl our with
coumaphos, which were spread over the frames
of the brood chamber. These procedures had
many disadvantages: a) neither the dose nor the
release of the drug were accurately controlled;
b) many beekeepers bought the product ignoring
their composition; c) the same drug was used
year after year, without taking into account the
product rotation; d) contaminant residues started
to appear in honey and beewax; e) as years went
by, the effi cacy of these treatments started to
decrease.

As a result, animal health-care agencies
(SENASA) and other offi cial organizations
(Ministerio de Asuntos Agrarios de la Provincia
de Buenos Aires), as well as the Arthropods
Laboratory of the Mar del Plata University,
alerted the apiarian fi eld about the risks of
this type of handling and the importance of
an immediate change in Argentina. Within few
years, several low-cost acaricides based on
amitraz, coumaphos and fl umethrine were
registered. However, new problems emerged:
some acaricides were effective in some areas
while in some others their effi cacy was low
or directly inexistent. When indiscriminately
used along many years, the active agent loses
effectiveness or causes the resistance of the mite
towards the acaricide (Maggi et al., 2008). As a
consequence, the Arthropods Laboratory began
the implementation of acaricide effectiveness
tests. Research took place mainly in two areas
of Buenos Aires, one of them near La Plata city
(northeast) and the other one near Mar del Plata
city (southeast).
First tests were made with amitraz-made
products. This drug, applied in continuous
releasing strips, proved to have an effi cacy
under 90% (Mar del Plata: 85.05%; La Plata:
88.13%; Marcangeli et al., 2005). When used as
a solution, the results were notoriously lower and
with a huge variation depending on the beehive
(La Plata: 70.02 ± 15.3; Marcangeli et al., 2005).
A similar situation was the one presented by the
use of fl uvalinate (La Plata: 67.15%, Marcangeli
and García, 2003).
Field trials with plastic strips with fl umethrin
showed better results and low variation between
areas and colonies (Mar del Plata: 90.03%
± 2.3; La Plata: 88.25% ± 1.8; Damiani and
Marcangeli, 2006). Still, there are registrations
of low effectiveness associated with problems
in the manufacturing of strips (Marcangeli, pers.
ob.). Coumaphos also has provided good results
in evaluated areas with values of 87.13% (La
Plata) and 89.28% (Mar del Plata; Marcangeli et
al., 2005). As a result, this drug was the most
popular, what brought the fi rst documented
cases of resistance in Argentina (Maggi et al.,
2008).
Nowadays, there are new cases of mite
resistance towards agents of synthesis (Maggi
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Figure 5. An example of IPM for V. destructor in Argentina (modifi ed
from Eguaras and Ruffi nengo, 2006). Blue arrows in X axis
indicate the times of V. destructor monitoring and capital
letters are the month from January (J) to April (A).

et al., 2009, Maggi et al., 2010, Maggi et al.,
2011b), resulting in a probable limited usage
in time. Possible options were to be found in
using natural substances such as essential
oils, botanical extracts and propolis (Damiani,
2010a, Damiani et al., 2010b, Damiani et al.,
2011). In preliminary tests, they proved to be
good perspectives for their integration in a
mite control system based on integrated pest
management (Eguaras and Ruffi nengo, 2006).
Figure 1 depicts an example of an IPM carried
out for V. destructor in the southeast of Buenos
Aires province (Eguaras and Ruffi nengo, 2006).
In periods subsequent to honey collection, a
standard colony can reach a mite population with
close to 4000-5000 individuals. This represents
the economic damage threshold for the colony.
Indeed, this phase is critical for the colony and,
therefore, a treatment should be administered to
reduce the mite population to tolerable values.
Currently daily counts of dead mites per colony
are close to 20 mites/day. To avoid colony
collapse, a treatment with thymol (1 application
of 25 g of thymol in alcohol solution embedded in
a spongy matrix) was conducted with an effi cacy
between 85% and 90%. As a result, the parasite

population fell abruptly to around 450/600 mites
per colony.
This treatment improves the colony condition
and ensures the emergence of healthy bees
to maintain a desirable colony population.
However, getting through the winter and starting
the spring in optimal conditions is not enough for
the colony. The remaining number of mites in the
hive, their continuous reproduction, coupled with
the reinfestation caused by the proximity of wild
swarms or neighbor apiaries, can alter the colony
development. A second treatment with oxalic acid
(4.5 % in sugar solution at 60%, 5 ml per comb)
should be initiated during the cold weather when
bee queens end egg-laying (usually June, early
July). If during these months brood does not
develop inside the colony, this single treatment
with oxalic acid will suffi ce to reduce mite
population (60/120 per colony) until the following
year (March), and no subsequent treatment will
be required in spring (see the red line in the
fi gure). After oxalic treatment, mite population
monitoring based on natural mite mortality is
around 1 or 2 dead mites per hive. This value will
increase to reach 20/25 mites per colony after
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harvest the following year. Conversely, if during
winter breeding is signifi cant, the oxalic treatment
will have a reduced fi nal effi cacy (from 5o to 70
%), and the number of mites per colonies will
only be reduced to 285/475 mites/colony. Indeed
further monitoring should be implemented and
possibly a new treatment with formic acid (purple
line) or a biotechnical method (comb trap-green
line) in early spring required.

CONCLUSION
Several fi eld experiments have shown that
IPM developed for mite control can be used
to maintain V. destructor populations below
colonies damage levels. Nonetheless, more time
should be spent and periodic visits be made to
the apiary in order to implement the program.
The IPM developed for beekeeping is a suitable
tool even in areas where bee brood is present
throughout the year. Taking this into account,
a single treatment cannot successfully control
parasites and, therefore, should be periodically
repeated. Biotechnical methods and low bee
toxicity products that do not add foreign elements
to hive products should be adopted. Forms of
control such as those developed in this chapter
can assist in the reduction of the longstanding use
of synthetic acaricides, reducing wax and honey
residues as well as the resistance phenomena
detected in V. destructor populations.
It has been demonstrated that the greater the
effectiveness and success of arthropod pest
management, the greater the likelihood of the
pest developing resistance to that management
tactics. This is particularly true when the goal of
pest management is to reduce pest population
and maintain it at a very low level. The probability
of resistance evolution will be lower when goals
emphasize damage and disease prevention,
which sometimes can be accomplished without
harming most of the pest population. In apiaries
where Varroa mites are still susceptible, rotation
between resistant and non-resistant acaricides
(still effective in the control of the parasite)
should prolong the effectiveness and prevent
the occurrence of chemically resistant mites.
In apiaries where Varroa mites are resistant,
the introduction of Integrated Resistance
Management (IRM) programs is essential.
This includes selecting bees tolerant to the

mite concerned, monitoring mite population,
implementing nonchemical control methods
and rotating pesticides, whether natural or
synthesized.
Finally, achieving an integrated management
of V. destructor entails a change of mind for
beekeepers and the active participation of all
those players involved in the industry. Producers
should understand that the only way in which
parasites can be managed is by implementing
health strategies that address parasites and
hosts biology, both of which are essential to attain
an effective acaricide treatment. National and
private scientifi c bodies should engage with the
current issues faced by beekeeping and promote
scientifi c activities aimed at discovering and
developing new tools that could be implemented
in an IPM. Finally, it is imperative that the political
players responsible for national bee health
ensure the linkage between the scientifi c and
productive sectors so that the tools developed
are implemented and honey bee preservation is
ensured.
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